精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\frac{\sqrt{x+1}}{ln(1-x)}$的定义域为[-1,0)∪(0,1).

分析 根据二次根式的性质以及对数函数的性质计算即可.

解答 解:由题意得:$\left\{\begin{array}{l}{x+1≥0}\\{1-x>0}\\{1-x≠1}\end{array}\right.$,
解得:-1≤x<1且x≠0,
故答案为:[-1,0)∪(0,1).

点评 本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质.是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知三棱锥S-ABC所有顶点都在球O的球面上,且SC⊥平面ABC,若AC=AB=1,SC=2,∠BAC=120°,则球D的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线y2=2px(p>0)与直线l:y=x+m相交于A、B两点,线段AB的中点横坐标为5,又抛物线C的焦点到直线l的距离为2$\sqrt{2}$,则m=(  )
A.-$\frac{1}{3}$或1B.-$\frac{13}{3}$或3C.-$\frac{1}{3}$或-3D.-$\frac{13}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)由此推测当婴儿生长满五个月时的体重为多少?
(参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{(1-2a)x+5a,x<1}\\{lo{g}_{7}x,x≥1}\end{array}\right.$的值域为R,那么a的取值范围是(  )
A.(-∞,-$\frac{1}{3}$]B.(-1,$\frac{1}{2}$)C.[-$\frac{1}{3}$,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinωx,其中常数ω>0.
(Ⅰ)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上单调递增,求ω的取值范围;
(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意n∈N*均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n}}{{b}_{n}}$=an+1成立,求c1+c2+c3+…+c2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示双曲线;q:“关于x的方程x2-mx+1=0没有实数根”.
若“¬p”和“p∨q”都是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c为△ABC的三个内角的对边,向量$\overrightarrow{m}$=(2cosB,1),$\overrightarrow{n}$=(1-sinB,sin2B-1),$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求∠B的大小;
(2)若a=1,c=2,求b的值.

查看答案和解析>>

同步练习册答案