分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.
解答 解:∵AB=1,AC=1,∠BAC=120°,
∴BC=$\sqrt{1+1-2×1×1×(-\frac{1}{2})}$=$\sqrt{3}$,
∴三角形ABC的外接圆直径2r=$\frac{\sqrt{3}}{sin120°}$=2,
∴r=1,
∵SC⊥面ABC,SC=2,三角形OSC为等腰三角形,
∴该三棱锥的外接球的半径R=$\sqrt{2}$,
∴该三棱锥的外接球的表面积为S=4πR2=4π×($\sqrt{2}$)2=8π.
故答案为:8π.
点评 本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$cosx | B. | -$\frac{\sqrt{2}}{2}$cosx | C. | -$\frac{\sqrt{2}}{2}$sinx | D. | $\frac{\sqrt{2}}{2}$sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x | B. | y=0 | C. | x=0 | D. | y=$\frac{1}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com