精英家教网 > 高中数学 > 题目详情
10.化简cos2($\frac{x}{2}$-$\frac{7π}{8}$)-cos2($\frac{x}{2}$+$\frac{7π}{8}$)的结果为(  )
A.$\frac{\sqrt{2}}{2}$cosxB.-$\frac{\sqrt{2}}{2}$cosxC.-$\frac{\sqrt{2}}{2}$sinxD.$\frac{\sqrt{2}}{2}$sinx

分析 由条件利用平方差公式,两角和差的三角公式,求得要求式子的值.

解答 解:∵cos2($\frac{x}{2}$-$\frac{7π}{8}$)-cos2($\frac{x}{2}$+$\frac{7π}{8}$)
=[cos($\frac{x}{2}$-$\frac{7π}{8}$)+cos($\frac{x}{2}$+$\frac{7π}{8}$)]•[cos($\frac{x}{2}$-$\frac{7π}{8}$)-cos($\frac{x}{2}$+$\frac{7π}{8}$)]
=(2cos$\frac{x}{2}$cos$\frac{7π}{8}$)•(2sin$\frac{x}{2}$sin$\frac{7π}{8}$)=sinx•sin$\frac{7π}{4}$=-$\frac{\sqrt{2}}{2}$sinx,
故选:C.

点评 本题主要考查平方差公式,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥2}\\{y≤2}\end{array}\right.$,若z=-ax+y的最小值为-2,则a等于(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.tan2α-sin2α-tan2αsin2α等于(  )
A.cos2αB.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解方程:(1)3x-16×3-x-6=0
(2)4${\;}^{\sqrt{x}}$-10•2${\;}^{\sqrt{x}}$+16=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.计算sin2$\frac{π}{8}$-cos2$\frac{π}{8}$的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知${∫}_{0}^{1}$exdx=e-1,${∫}_{0}^{1}$x2dx=$\frac{1}{3}$.求下列定积分:
(1)${∫}_{0}^{1}$(ex+x2)dx;
(2)${∫}_{0}^{1}$(2ex-x2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α∈(0,π),若cos(-α)-sin(-α)=-$\frac{1}{5}$,则tanα等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.-$\frac{4}{3}$或-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P,Q分别在∠AOB的两边OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面积为8,则PQ中点M的极坐标方程为(  )
A.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$)B.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$)
C.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$)D.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥S-ABC所有顶点都在球O的球面上,且SC⊥平面ABC,若AC=AB=1,SC=2,∠BAC=120°,则球D的表面积为8π.

查看答案和解析>>

同步练习册答案