精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2+x-2,x∈[-1,6],若在其定义域内任取一数x0使得f(x0)≤0概率是(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

分析 由题意,本题符合几何概型的特点,只要求出区间长度,由公式解答.

解答 解:已知区间[-1,6]长度为7,
满足f(x0)≤0,f(x)=x02+x0-2≤0,解得-1≤x0≤1,对应区间长度为2,
由几何概型公式可得,使f(x0)≤0成立的概率是P=$\frac{2}{7}$.
故选:A.

点评 本题考查了几何概型的运用;根据是明确几何测度,是利用区域的长度、面积函数体积表示,然后利用公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知P,Q分别在∠AOB的两边OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面积为8,则PQ中点M的极坐标方程为(  )
A.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$)B.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$)
C.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$)D.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥S-ABC所有顶点都在球O的球面上,且SC⊥平面ABC,若AC=AB=1,SC=2,∠BAC=120°,则球D的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(x,1,2),$\overrightarrow{b}$=(1,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$({{x^2}+m}){({x-\frac{1}{x}})^6}$展开式中含x2的项的系数为$-\frac{25}{2}$,则m的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线$\sqrt{2}$ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$的最小值为(  )
A.4B.2$\sqrt{2}$C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线y2=2px(p>0)与直线l:y=x+m相交于A、B两点,线段AB的中点横坐标为5,又抛物线C的焦点到直线l的距离为2$\sqrt{2}$,则m=(  )
A.-$\frac{1}{3}$或1B.-$\frac{13}{3}$或3C.-$\frac{1}{3}$或-3D.-$\frac{13}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)由此推测当婴儿生长满五个月时的体重为多少?
(参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示双曲线;q:“关于x的方程x2-mx+1=0没有实数根”.
若“¬p”和“p∨q”都是真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案