【题目】若函数对任意的均有则称函数具有性质
(Ⅰ)判断下面两个函数是否具有性质并说明理由.
①②
(Ⅱ)若函数具有性质,且
求证:对任意有
(Ⅲ)在(Ⅱ)的条件下,是否对任意均有若成立,给出证明;若不成立,给出反例.
【答案】(1)具有,不具有(2)见解析(3)不成立
【解析】试题分析:(1)肯定结论需证明:根据定义比较大小,作差,提取因子,再利用基本不等式可得结论;对于否定结论,只需举一个反例即可,(2)利用反证法证明,由于条件满足差值单调递增,利用累加可得矛盾,(3)构造一个反例说明不成立,一般举分段函数,分有理数与无理数进行列式.
试题解析:解:(Ⅰ)①函数具有性质
因为即
此函数为具有性质
②函数不具有性质
例如,当时,
所以此函数不具有性质
(Ⅱ)假设为中第一个大于的值,则
因为函数具有性质所以对于任意的均有
所以
所以
与矛盾,
所以,对任意的有
(Ⅲ)不成立.
例如.
证明:当为有理数时, 均为有理数,
当为无理数时, 均为无理数,
所以,函数对任意的,均有
即函数具有性质
而当且当为无理数时,
所以,在(Ⅱ)的条件下,“对任意的均有”不成立.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,且过点.
求椭圆的标准方程;
设直线l经过点且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实常数和,使得函数和对其公共定义域上的任意实数都满足: 和恒成立,则称此直线为和的“隔离直线”,已知函数, ,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为-4;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足a1=m,an+1= (k∈N*,r∈R),其前n项和为.
(1)当m与r满足什么关系时,对任意的n∈N*,数列{an}都满足an+2=an?
(2)对任意实数m,r,是否存在实数p与q,使得{a2n+1+p}与{a2n+q}是同一个等比数列.若存在,请求出p,q满足的条件;若不存在,请说明理由;
(3)当m=r=1时,若对任意的n∈N*,都有Sn≥λan,求实数λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合计 |
(1)求出表中字母所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5范围内有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=3,a2,且2an+1=3an﹣an-1.
(1)求证:数列{an+1﹣an}是等比数列,并求数列{an}通项公式;
(2)求数列{nan}的前n项和为Tn,若对任意的正整数n恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图。 学校规定:成绩不得低于85分的为优秀
(1)根据以上数据填写下列的的列联表
甲 | 乙 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(2)是否有的把握认为成绩优异与教学方式有关?”(计算保留三位有效数字)
下面临界值表仅供参考:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱AA1⊥底面ABC.已知D是BC的中点,AB=AA1=2.
(I)求证:平面AB1D⊥平面BB1C1C;
(II)求证:A1C∥平面AB1D;
(III)求三棱锥A1-AB1D的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com