精英家教网 > 高中数学 > 题目详情
化简下列各式:
(1)
3a-8
3a15
÷
3a
7
2
a-3
(a>0)
(2)4×(
3
2
 
1
2
×(6
3
4
 
1
4
-
10
2-
3
+(
1
300
 -
1
2
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:(1)(2)利用指数幂的运算法则即可得出.
解答: 解:(1)原式=
a-
8
3
a
15
3
3a
7
2
a-
3
2
=
a
7
6
a
2
3
=
a
(a>0).
(2)原式=
43
2
×(
33
22
)
1
4
-
10(2+
3
)
(2-
3
)(2+
3
)
+(3×100)
1
2

=
3
1
4
+
3
4
2
×
2
-10(2+
3
)
+10
3

=
3
2
-20-10
3
+10
3

=-14.
点评:本题考查了指数幂的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m-1
x
-lnx,m∈R,函数g(x)=
1
cosθ•x
+lnx在[1,+∞)上为增函数,且θ∈[0,
π
2
).
(1)求θ的取值范围;c
(2)若h(x)=f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)若在[1,e]上至少存在一个x0,使得h(x0)>
2e
x0
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,函数f(x)=x3-ax2-4x+4a
(1)若a=
1
2
,求f(x)在[-2,2]上的最大值和最小值;
(2)若f(x)在(2,+∞)上是单调递增的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x=a和x=b是函数f(x)=lnx+
1
2
x2-(m+2)x的两个极值点,其中a<b,m∈R.
(1)求f(a)+f(b)的取值范围;
(2)若m≥
e
+
1
e
-2(e为自然对数的底数),求f(b)-f(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x-3
(1)指出图象开口方向、对称轴方程、顶点坐标;
(2)画出函数图象,并说明图象是由f(x)=x2经过怎样的平移得到;
(3)求f(2)、f(
1
x
);
(4)判断函数f(x)在(-∞,-1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线S:y=x3-6x2-x+6,求S上斜率最小的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an+1=2an+1,a1=2,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α,β)(x)=(α+
1
x
x+β(x>0,α≥0,β≥0)
①令g(x)=ln(f(1,1)(x)),求证:g(x)在(0,1)上单调递减;
②若f(α,0)(x)≤e在(0,+∞)上恒成立,求α的取值范围.(e为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-
54
x
在区间(-∞,0)上的最小值
 

查看答案和解析>>

同步练习册答案