精英家教网 > 高中数学 > 题目详情
11.已知${log_{\frac{2}{3}}}a<1$,则a的取值范围是(  )
A.(0,1)B.(0,$\frac{2}{3}$)C.($\frac{2}{3}$,1)D.($\frac{2}{3}$,+∞)

分析 把不等式两边化为同底数,然后利用对数函数的单调性求得a的取值范围.

解答 解:由${log_{\frac{2}{3}}}a<1$,得$lo{g}_{\frac{2}{3}}a$<$lo{g}_{\frac{2}{3}}\frac{2}{3}$,即a>$\frac{2}{3}$.
∴a的取值范围是($\frac{2}{3}$,+∞).
故选:D.

点评 本题考查对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤a(a>0)}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为3,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=($\sqrt{3}$,cos4ωx),$\overrightarrow{b}$=(sin4ωx,1)(ω>0),令f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$且f(x)的周期为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)若x∈[0,$\frac{π}{4}$]时f(x)+m≤2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,则$\frac{x}{y}$的取值范围是[$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},则关于x的不等式cx2-bx+a<0的解集为(-∞,-$\frac{1}{6}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为(  )
A.320B.160C.96D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知四棱锥P-ABCD的底面是正方形,PA⊥底面AC,PA=2AD=2,则它外接球表面积为(  )
A.$\sqrt{6}$πB.C.$\frac{3}{2}$πD.$\frac{\sqrt{6}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>1,函数y=$\frac{4}{x-1}$+x的最小值是(  )
A.5B.4C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B.若2$\overrightarrow{AF}$=-$\overrightarrow{FB}$,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.2C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

同步练习册答案