精英家教网 > 高中数学 > 题目详情

下列命题中,真命题是

A.,使得

B.

C.

D.的充分不必要条件

D

【解析】A.的值域为,所以“,使得 ”是假命题;

B.,当且仅当,即成立(而),

所以“ ”为假命题;

C.当时,,所以“”为假命题;

D.当,由不等式的性质,得;而满足,不满足,所以“的充分不必要条件”是假命题;故选D.

考点:命题的判定.

考点分析: 考点1:命题及其关系 考点2:必要条件、充分条件与充要条件的判断 【知识点的认识】正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点.
1.充分条件:对于命题“若p则q”为真时,即如果p成立,那么q一定成立,记作“p?q”,称p为q的充分条件.意义是说条件p充分保证了结论q的成立,换句话说要使结论q成立,具备条件p就够了当然q成立还有其他充分条件.如p:x≥6,q:x>2,p是q成立的充分条件,而r:x>3,也是q成立的充分条件.
必要条件:如果q成立,那么p成立,即“q?p”,或者如果p不成立,那么q一定不成立,也就是“若非p则非q”,记作“¬p?¬q”,这是就说条件p是q的必要条件,意思是说条件p是q成立的必须具备的条件.
充要条件:如果既有“p?q”,又有“q?p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p?q”.
2.从集合角度看概念:
如果条件p和结论q的结果分别可用集合P、Q 表示,那么
①“p?q”,相当于“P?Q”.即:要使x∈Q成立,只要x∈P就足够了--有它就行.
②“q?p”,相当于“P?Q”,即:为使x∈Q成立,必须要使x∈P--缺它不行.
③“p?q”,相当于“P=Q”,即:互为充要的两个条件刻画的是同一事物.
3.当命题“若p则q”为真时,可表示为,则我们称p为q的充分条件,q是p的必要条件.这里由,得出p为q的充分条件是容易理解的.但为什么说q是p的必要条件呢?事实上,与“”等价的逆否命题是“”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.
4.“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同.也就是说,如果命题p等价于命题q,那么我们说命题p成立的充要条件是命题q成立;同时有命题q成立的充要条件是命题p成立.
【解题方法点拨】
1.借助于集合知识加以判断,若P?Q,则P是Q的充分条件,Q是的P的必要条件;若P=Q,则P与Q互为充要条件.
2.等价法:“P?Q”?“¬Q?¬P”,即原命题和逆否命题是等价的;原命题的逆命题和原命题的否命题是等价的.
3.对于充要条件的证明,一般有两种方法:其一,是用分类思想从充分性、必要性两种情况分别加以证明;其二,是逐步找出其成立的充要条件用“?”连接.
【命题方向】
充要条件主要是研究命题的条件与结论之间的逻辑关系,它是中学数学最重要的数学概念之一,它是今后的高中乃至大学数学推理学习的基础.在每年的高考中,都会考查此类问题. 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年甘肃省高三第一次联考文科数学试卷(解析版) 题型:选择题

下列推断错误的是( )

A.命题“若 ”的逆否命题为“若

B.命题存在,使得,则非任意,都有

C.若为假命题,则均为假命题

D.“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源:2014-2015学年福建省福州市高三毕业班第六次质量检查文科数学试卷(解析版) 题型:选择题

现有四个函数:①;②;③; ④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是

A.④①②③ B.①④③② C.①④②③ D.③④②①

查看答案和解析>>

科目:高中数学 来源:2014-2015学年福建省福州市高三毕业班第六次质量检查理科数学试卷(解析版) 题型:填空题

如图所示,记正方体的中心为,面的中心为 的中点为则空间四边形在该正方体各个面上的投影可能是 .(把你认为正确命题的序号填写在答题纸上)

查看答案和解析>>

科目:高中数学 来源:2014-2015学年福建省福州市高三毕业班第六次质量检查理科数学试卷(解析版) 题型:选择题

为如图所示的程序框图中输出的结果,则化简 的结果是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年重庆市高一上学期期末考试数学试卷(解析版) 题型:解答题

(本小题13分)已知函数在区间[-1,2]上的最大值是最小值的8倍.

(Ⅰ)求a的值;

(Ⅱ)当a>1时,解不等式

查看答案和解析>>

科目:高中数学 来源:2014-2015学年重庆市高一上学期期末考试数学试卷(解析版) 题型:填空题

查看答案和解析>>

科目:高中数学 来源:2014-2015学年云南省高二上学期期末考试文科数学试卷(解析版) 题型:填空题

设直线x-3y+m=0(m≠0)与双曲线(a>0, b>0)的两条渐近线分别交于A、B两点,若P(m, 0)满足|PA|=|PB|,则该双曲线的离心率为 .

查看答案和解析>>

科目:高中数学 来源:2014-2015学年山东省文登市高二上学期期末考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)已知椭圆与双曲线的焦点相同,且它们的离心率之和等于.

(Ⅰ)求椭圆方程;

(Ⅱ)过椭圆内一点作一条弦,使该弦被点平分,求弦所在直线方程.

查看答案和解析>>

同步练习册答案