精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+alnx(a∈R).
(Ⅰ)当a=-4时,求f(x)的最小值;
(Ⅱ)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;
(Ⅲ)求证:
1
1
3
ln2+
1
4
+
1
1
3
ln3+
1
4
+
1
1
3
ln4+
1
4
+…+
1
1
3
lnn+
1
4
(5n+8)(n-1)
(n+1)(n+2)
(n≥2,n∈N).
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的概念及应用,导数的综合应用
分析:(Ⅰ)当a=-4时,f(x)=x2+2x-4lnx,x>0.f′(x)=
2(x+2)(x-1)
x
,由此能求出f(x)的极小值.
(Ⅱ)由f(x)=x2+2x+alnx(a∈R),知f′(x)=
2x2+2x+a
x
,设g(x)=2x2+2x+a,由函数f(x)在区间(0,1)上为单调函数,能求出实数a的取值范围.
:(Ⅲ)由(I)得,当x≥1时,f(x)=x2+2x-4lnx≥3,即x2+2x≥4lnx+3>0,即
1
4lnx+3
1
x2+2x
,即
1
4lnn+3
1
n2+2n
=
1
2
1
n
-
1
n+2
),进而利用裂项相消法,可得结论.
解答: 解:(Ⅰ)当a=-4时,f(x)=x2+2x-4lnx,x>0
f′(x)=
2(x+2)(x-1)
x

令f′(x)=0,得x=-2(舍),或x=1,
列表,得
 x(0,1)(1,+∞) 
 f′(x)- 0+
 f(x) 极小值
∴f(x)的极小值f(1)=1+2-4ln1=3,
∵f(x)=x2+2x-4lnx,x>0只有一个极小值,
∴当x=1时,函数f(x)取最小值3.
(Ⅱ)∵f(x)=x2+2x+alnx(a∈R),
∴f′(x)=
2x2+2x+a
x
,(x>0),
设g(x)=2x2+2x+a,
∵函数f(x)在区间(0,1)上为单调函数,
∴g(0)≥0,或g(1)≤0,
∴a≥0,或2+2+a≤0,
∴实数a的取值范围是{a|a≥0,或a≤-4}.
证明:(Ⅲ)由(I)得,当x≥1时,f(x)=x2+2x-4lnx≥3,
∴x2+2x≥4lnx+3>0,
1
4lnx+3
1
x2+2x

1
4lnn+3
1
n2+2n
=
1
2
1
n
-
1
n+2
),
1
4ln2+3
+
1
4ln3+3
+
1
4ln4+3
+
…+
1
4lnn+3
1
2
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)=
1
2
1
2
+
1
3
-
1
n+1
-
1
n+2
),
1
4ln2+3
+
1
4ln3+3
+
1
4ln4+3
+
…+
1
4lnn+3
(5n+8)(n-1)
12(n+1)(n+2)
(n≥2,n∈N).
1
1
3
ln2+
1
4
+
1
1
3
ln3+
1
4
+
1
1
3
ln4+
1
4
+…+
1
1
3
lnn+
1
4
(5n+8)(n-1)
(n+1)(n+2)
(n≥2,n∈N).
点评:本题考查利用导数求闭区间上函数最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列的通项与项数存在着如下表的关系,请写出可能的一个通项公式:an=
 

n12345
an38152435

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(x-1)+bx+c(a∈R,b,c∈Z),对于取定的一组a,b,c的值,若计算得到f(-1)=1,则f(3)的值一定不可能是(  )
A、5B、-2C、1D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,各棱长均为3,P、Q分别是侧棱BB1、CC1上的点,且BP=C1Q=1.
(1)在AC上是否存在一点D,使得BD∥平面APQ?证明你的结论;
(2)利用(1)的结论证明:平面APQ⊥平面AA1CC1
(3)求三棱柱Q-APA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,n>0,且2m,
5
2
,3n成等差数列,则m+
2
m
+
3
n
+
3
2
n的最小值为(  )
A、
5
2
B、5
C、
15
2
D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若
AB
=m
AM
AC
=n
AN
,则m+n的值为(  )
A、1
B、2
C、-2
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x3-ax+1在区间[-1,1]上单调递减,那么a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程(2x-y)(x+y-3)=0与(x-y-1)(2x-y-3)=0所表示的两曲线的公共点个数是(  )
A、1个B、2个
C、3个D、多于3个

查看答案和解析>>

科目:高中数学 来源: 题型:

设十件产品中有四件不合格,从中任意取两件,试求:在所取得的产品中发现有一件是不合格品,另一件也是不合格品的概率是多少?

查看答案和解析>>

同步练习册答案