精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

【答案】

【解析】设P(x,y),M(x1,y1),N(x2,y2),

则由,得(x,y)=2x1y1-x2y2),

即x=2x1-x2,y=2y1-y2

点M,N在双曲线上,所以

2x2-y2=(8x12+2x22-8x1x2)-(4y12+y22-4y1y2)=20-4(2x1x2-y1y2),

设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=2,

∴y1y2-2 x1x2=0,

∴2x2-y2=20,

所以P在双曲线2x2-y2=20上;

设该双曲线的左,右焦点为F1,F2

由双曲线的定义可推断出为定值,该定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=(1+x)m+(1+2x)n(mn∈N*)的展开式中x的系数为11.

(1)求x2的系数取最小值时n的值;

(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求曲线在点处的切线方程;

2若曲线与直线只有一个交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R.

(1)当时,求函数的最小值;

(2)若对任意,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若函数恰有一个零点,求实数的取值范围;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);

求用户用水费用(元)关于月用水量(吨)的函数关系式;

Ⅲ)如图2是该县居民李某20171~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某20171~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

同步练习册答案