精英家教网 > 高中数学 > 题目详情
已知在等比数列{an}中,2a2=a1+a3-1,a1=1.
(1)若数列{bn}满足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*),求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出a1=1,2q=q2,从而得到an=2n-1.由此利用错位相减法能求出数列{bn}的通项公式.
(2)由(1)得Sn=1+2×20+3×21+4×22+…+n•2n-2,由此利用错位相减法能求出数列{bn}的前n项和Sn
解答: 解:(1)设数列{an}的公比为q,2a2=a1+a3-1,
2a1q=a1+a1q2-1
∵a1=1,∴2q=q2
∵q≠0,∴q=2,an=2n-1
b1+
b2
2
+
b3
3
+…+
bn
n
=an
,①
当n≥2时,b1+
b2
2
+
b3
3
+…+
bn-1
n-1
=an-1,②
①-②,得
bn
n
=an-an-1
=2n-1-2n-2=2n-2
∴bn=n•2n-2,n≥2.
∴bn=
1,n=1
n•2n-2,n≥2

(2)由(1)得Sn=1+2×20+3×21+4×22+…+n•2n-2,③
2Sn=2+2×21+3×22+…+(n-1)•2n-2+n•2n-1,④
③-④得
-Sn=1+2+22+…+2n-2-n•2n-1
=
1-2n-1
1-2
-n•2n-1
=(1-n)•2n-1-1,
∴Sn=(n-1)•2n-1+1.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为2
2
的正方形,其他四个侧面是侧棱长为
5
的等腰三角形,过棱PD的中点E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分别交四棱锥各棱F、G、H.
(Ⅰ)证明:EF∥平面ABCD;
(Ⅱ)求截面EFGH与平面PAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ad≠bc,求证:(a2+b2)(c2+d2)>(ac+bd)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆内接四边形ABCD中,O为圆心,AB=2,BC=6,AD=CD=4.
(1)求∠BAD的大小和半径AO的长;
(2)若
AO
=x
AB
+y
AD
,求x+y的值;
(3)若P是弧BAD上的动点,
OP
OB
OD
,求λ+μ的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
tlnx
x
(t≠0的常数).
(Ⅰ)若f(x)的单调递增区间是(0,e)(e是自然对数的底数),求t的取值范围;
(Ⅱ)若函数g(x)=(f(x))2+4f(x)+4只有一个零点,求t的取值范围;
(Ⅲ)若t>0,对任意x≥1,f(x)≤
(x2-1)t2
x2
恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若
a
=(x-
3
,y),
b
=(x+
3
,y),且|
a
|+|
b
|=4,
(I)求动点Q(x,y)的轨迹C的方程;
(Ⅱ)已知定点P(t,0)(t>0),若斜率为1的直线l过点P并与轨迹C交于不同的两点A,B,且对于轨迹C上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ
OB
成立,试求出满足条件的实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=-
3
5
,π<θ<
2
,求(sin
θ
2
-cos
θ
2
2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出终边在直线上角的集合y=
3
x上角的集合
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<π,求函数y=sinx+
2
sinx
的最小值为
 

查看答案和解析>>

同步练习册答案