精英家教网 > 高中数学 > 题目详情
14.对数列{an},“an>0对于任意n∈N*成立”是“其前n项和数列{Sn}为递增数列”的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.非充分非必须条件

分析 根据递增数列的性质以及充分必要条件判断即可.

解答 解:对数列{an},“an>0对于任意n∈N*成立”,
“其前n项和数列{Sn}为递增数列”,是充分条件,
若“其前n项和数列{Sn}为递增数列”,
则对数列{an},“an>0对于任意n∈N*成立”,是必要条件,
故选:C.

点评 本题考查了递增数列的性质以及充分必要条件判断即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为(  )
A.100,8B.80,20C.100,20D.80,8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A=$\left\{{y\left|{y={x^2}}\right.}\right.-\frac{3}{2}x+1,\frac{3}{4}≤x≤\left.2\right\},B=\left\{{\left.{x\left|{x+{m^2}≥1}\right.}\right\}}$,p:x∈A,q:x∈B,并且p是q的充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数g(x)是R上的偶函数,当x<0时,g(x)=ln(1-x),函数$f(x)=\left\{\begin{array}{l}{x^3},x≤0\\ g(x),x>0\end{array}\right.$满足f(2-x2)>f(x),则实数x的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(1,2)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若θ∈R,则直线y=sinθ•x+2的倾斜角的取值范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a\;,\;\;\overrightarrow b$都是非零向量,“$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|$”是“$\overrightarrow a∥\overrightarrow b$”的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个函数中是R上的减函数的为(  )
A.$y={log_2}{2^{-x}}$B.$y={({\frac{1}{2}})^{-x}}$C.$y=\frac{1}{x+1}$D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设p:f(x)=1+ax,在(0,2]上f(x)≥0恒成立,q函数g(x)=ax-$\frac{a}{x}$+2lnx在其定义域上存在极值.
(1)若p为真命题,求实数a的取值范围;
(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线y=ax+1和抛物线y2=4x(F是抛物线的焦点)相交于A、B两点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)求实数a的值,使得以AB为直径的圆过F点.

查看答案和解析>>

同步练习册答案