精英家教网 > 高中数学 > 题目详情
5.已知集合A=$\left\{{y\left|{y={x^2}}\right.}\right.-\frac{3}{2}x+1,\frac{3}{4}≤x≤\left.2\right\},B=\left\{{\left.{x\left|{x+{m^2}≥1}\right.}\right\}}$,p:x∈A,q:x∈B,并且p是q的充分条件,求m的取值范围.

分析 根据二次函数的性质求出A的范围,化简集合B,根据A⊆B,得到关于m的不等式,解出即可.

解答 解:化简集合$A=\left\{{y\left|{y={x^2}}\right.}\right.-\frac{3}{2}x+1,\frac{3}{4}≤x≤\left.2\right\}$,
配方,得$y={(x-\frac{3}{4})^2}+\frac{7}{16}$.因为$x∈[{\frac{7}{16},2}]$,
∴${y_{min}}=\frac{7}{16},{y_{max}}=2∴y∈[{\frac{7}{16},2}]∴A=\left\{{y|\left.{\frac{7}{16}≤y≤2}\right\}}\right.$,
化简集合B,由x+m2≥1,得x≥1-m2,B={x|x≥1-m2},
因为命p题是命题q的充分条件,
∴$A⊆B∴1-{m^2}≤\frac{7}{16}$解得$m≥\frac{3}{4}$或$m≤-\frac{3}{4}$,
故实数的取值范围是$({-∞,\left.{-\frac{3}{4}}]}\right.∪[{\frac{3}{4}}\right.,+\left.∞)$.

点评 本题考查了二次函数的性质,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax+b(a,b∈R).
(1)若f(x)在x=0处的极小值为2,求a,b的值;
(2)设g(x)=f(x)+ln(x+1),当x≥0时,g(x)≥1+b,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A-B=$\frac{π}{6}$
(1)求边c的长;
(2)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{\sqrt{x},x>0}\end{array}\right.$若f[f(x0)]=1,则x0=-1或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2lnx-3x2-11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若a、b、m、n∈R+,求证:$\frac{m^2}{a}+\frac{n^2}{b}≥\frac{{{{({m+n})}^2}}}{a+b}$;
(2)利用(1)的结论,求下列问题:已知$x∈({0,\frac{1}{2}})$,求$\frac{2}{x}+\frac{9}{1-2x}$的最小值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数z1=$\sqrt{2}$+i,z2=-1+$\sqrt{3}$i在复平面上对应的向量分别为$\overrightarrow{O{Z}_{1}}$,$\overrightarrow{O{Z}_{2}}$,则$\overrightarrow{O{Z}_{1}}$与$\overrightarrow{O{Z}_{2}}$的夹角为$arccos\frac{3-\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对数列{an},“an>0对于任意n∈N*成立”是“其前n项和数列{Sn}为递增数列”的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.非充分非必须条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果一个水平放置的图形的斜二测直观图是一个腰为1的等腰直角三角形,那么原平面图形的面积是(  )
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{2}}}{8}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案