分析 根据二次函数的性质求出A的范围,化简集合B,根据A⊆B,得到关于m的不等式,解出即可.
解答 解:化简集合$A=\left\{{y\left|{y={x^2}}\right.}\right.-\frac{3}{2}x+1,\frac{3}{4}≤x≤\left.2\right\}$,
配方,得$y={(x-\frac{3}{4})^2}+\frac{7}{16}$.因为$x∈[{\frac{7}{16},2}]$,
∴${y_{min}}=\frac{7}{16},{y_{max}}=2∴y∈[{\frac{7}{16},2}]∴A=\left\{{y|\left.{\frac{7}{16}≤y≤2}\right\}}\right.$,
化简集合B,由x+m2≥1,得x≥1-m2,B={x|x≥1-m2},
因为命p题是命题q的充分条件,
∴$A⊆B∴1-{m^2}≤\frac{7}{16}$解得$m≥\frac{3}{4}$或$m≤-\frac{3}{4}$,
故实数的取值范围是$({-∞,\left.{-\frac{3}{4}}]}\right.∪[{\frac{3}{4}}\right.,+\left.∞)$.
点评 本题考查了二次函数的性质,考查集合的包含关系,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充分必要条件 | D. | 非充分非必须条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{2}}}{8}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com