分析 根据条件即可得出向量$\overrightarrow{O{Z}_{1}}$和$\overrightarrow{O{Z}_{2}}$的坐标,从而便可求出$\overrightarrow{O{Z}_{1}}$和$\overrightarrow{O{Z}_{2}}$的夹角.
解答 解:由题意得:$\overrightarrow{O{Z}_{1}}=(\sqrt{2},1),\overrightarrow{O{Z}_{2}}=(-1,\sqrt{3})$;
∴$\overrightarrow{O{Z}_{1}}•\overrightarrow{O{Z}_{2}}=-\sqrt{2}+\sqrt{3}$,$|\overrightarrow{O{Z}_{1}}|=\sqrt{3},|\overrightarrow{O{Z}_{2}}|=2$;
∴$cosθ=\frac{-\sqrt{2}+\sqrt{3}}{2\sqrt{3}}=\frac{3-\sqrt{6}}{6}$;
∴$θ=arccos\frac{3-\sqrt{6}}{6}$.
故答案为:$arccos\frac{3-\sqrt{6}}{6}$.
点评 考查复数的概念,以及复数对应向量的表示,向量数量积的坐标运算,向量夹角的余弦公式.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | [1,2] | C. | (2,4] | D. | [2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1)∪(2,+∞) | B. | (-∞,-2)∪(1,+∞) | C. | (1,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={log_2}{2^{-x}}$ | B. | $y={({\frac{1}{2}})^{-x}}$ | C. | $y=\frac{1}{x+1}$ | D. | y=x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | -$\frac{1}{8}$ | C. | 8 | D. | -8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com