精英家教网 > 高中数学 > 题目详情
10.在复平面中曲线y=x2上有点B1,B2,…,Bn,在实轴上有点A1,A2,…,An;其中A1(1,0)…,An(xn,0)…,且xn≤1,线段AnBn(n=1,2,3,…)都与y轴平行,An+1Bn斜率为2xn(n=1,2,3,…).求:
(1)|$\overrightarrow{{B}_{1}A{\;}_{2}}$+$\overrightarrow{B{\;}_{2}A{\;}_{3}}$+…+$\overrightarrow{{B}_{n}A{\;}_{n+1}}$|=f(n)的表达式;
(2)并计算$\underset{lim}{n→∞}$[f(n)]2

分析 (1)由题意可得:x1=1,${B}_{n}({x}_{n},{x}_{n}^{2})$,An+1(xn+1,0),利用斜率计算公式可得:An+1Bn斜率2xn=$\frac{{x}_{n}^{2}}{{x}_{n}-{x}_{n+1}}=2{x}_{n}$,化为${x}_{n+1}=\frac{1}{2}{x}_{n}$,利用等比数列的通项公式可得xn.于是$\overrightarrow{{B}_{n}{A}_{n+1}}$=$({x}_{n+1}-{x}_{n},-{x}_{n}^{2})$,再利用向量的坐标运算、等比数列的前n项和公式可得:$\overrightarrow{{B}_{1}A{\;}_{2}}$+$\overrightarrow{B{\;}_{2}A{\;}_{3}}$+…+$\overrightarrow{{B}_{n}A{\;}_{n+1}}$.
(2)利用数列极限运算性质即可得出.

解答 解:(1)由题意可得:x1=1,${B}_{n}({x}_{n},{x}_{n}^{2})$,An+1(xn+1,0),∴An+1Bn斜率2xn=$\frac{{x}_{n}^{2}}{{x}_{n}-{x}_{n+1}}=2{x}_{n}$,化为${x}_{n+1}=\frac{1}{2}{x}_{n}$,
∴数列{xn}是等比数列,首项为1,公比为$\frac{1}{2}$,∴${x}_{n}=(\frac{1}{2})^{n-1}$.
$\overrightarrow{{B}_{n}{A}_{n+1}}$=$({x}_{n+1}-{x}_{n},-{x}_{n}^{2})$,
∴$\overrightarrow{{B}_{1}A{\;}_{2}}$+$\overrightarrow{B{\;}_{2}A{\;}_{3}}$+…+$\overrightarrow{{B}_{n}A{\;}_{n+1}}$=$({x}_{n+1}-{x}_{1},-{x}_{1}^{2}-{x}_{2}^{2}-…-{x}_{n}^{2})$=$(\frac{1}{{2}^{n}}-1,-\frac{1-\frac{1}{{4}^{n}}}{1-\frac{1}{4}})$=$(\frac{1}{{2}^{n}}-1,\frac{4}{3}(\frac{1}{{4}^{n}}-1))$,
∴f(n)=$\sqrt{(\frac{1}{{2}^{n}}-1)^{2}+\frac{16}{9}(\frac{1}{{4}^{n}}-1)^{2}}$,
(2)$\underset{lim}{n→∞}$[f(n)]2=1+$\frac{16}{9}$=$\frac{25}{9}$.

点评 本题考查了斜率计算公式、向量坐标运算、等比数列的通项公式及其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:选择题

,若函数,有大于零的极值点,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数{an}满足:ak-1+ak+1≥2ak(k=2,3,…).
(1)若a1=2,a2=5,a4=11,求a3的值.
(2)若a1=a2015=a,证明:ak+1-ak≥$\frac{{a}_{k+1}-a}{k}$且ak≤a,(k=1,2,…,2015)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=cos3(2x+3)的导数是-6cos2(2x+3)sin(2x+3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足$\overrightarrow{ON}$=$\frac{3}{4}$$\overrightarrow{OM}$,O为坐标原点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)以点M为起点的任意两条射线l1,l2,关于直线l:y=x-4对称,并且l1与抛物线C交于A,B两点,l2与抛物线C交于D,E两点,线段AB,DE的中点分别为G,H两点,当直线l1的倾斜角在[$\frac{π}{6}$,$\frac{π}{4}$]内时,求直线GH被抛物线截得的弦长的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过抛物线y2=2px(p>0)的焦点F的一条直线交抛物线于点P、Q,设点Q关于x轴的对称点为Q′,准线与X轴的交点是点B,求证:P、Q′、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα、tanβ为是于x的方程x2+px+q=0的两根,则sin2(α+β)+psin(α+β)cos(α+β)+qcos2(α+β)的值为q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C的圆心在x轴正半轴上,半径为5,且与直线4x+3y+17=0相切.
(1)求圆C的方程;
(2)设点P(-1,$\frac{3}{2}$),过点p作直线l与圆C交于A,B两点,若AB=8,求直线l的方程;
(3)设P是直线x+y+6=0上的点,过P点作圆C的切线PA,PB,切点为A,B.求证:经过A,P,C三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′-BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′-BCDE体积的最大值为$\sqrt{2}$.
其中正确的是②③(填上所有正确的序号).

查看答案和解析>>

同步练习册答案