精英家教网 > 高中数学 > 题目详情
2.已知tanα、tanβ为是于x的方程x2+px+q=0的两根,则sin2(α+β)+psin(α+β)cos(α+β)+qcos2(α+β)的值为q.

分析 因为tanα,tanβ是方程x2+px+q=0的两根,所以根据根与系数的关系求出tanα+tanβ和tanαtanβ的值,然后利用两角和正切函数公式求出tan(α+β)的值,把所求的式子提取cos2(α+β)=$\frac{1}{1+ta{n}^{2}(α+β)}$后得到关于tan(α+β)的关系式,把tan(α+β)的值代入即可求出值.

解答 解:(1)由韦达达定理知$\left\{\begin{array}{l}{tanα+tanβ=-p}\\{tanα•tanβ=q}\end{array}\right.$,又tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=-$\frac{p}{1-q}$,
∴sin2(α+β)+psin(α+β)cos(α+β)+qcos2(α+β)
cos2(α+β)[tan2(α+β)+ptan(α+β)+q]
=$\frac{1}{1+ta{n}^{2}(α+β)}$[tan2(α+β)+ptan(α+β)+q]
=$\frac{1}{1+\frac{{p}^{2}}{(q-1)^{2}}}$[$\frac{{p}^{2}}{(q-1)^{2}}$+$\frac{{p}^{2}}{q-1}$+q]
=$\frac{q(1+{p}^{2}+{q}^{2}-2q)}{1+{p}^{2}+{q}^{2}-2q}$
=q.
故答案为:q.

点评 考查学生灵活运用两角和与差的正切函数公式及同角三角函数间的基本关系化简求值,灵活运用韦达定理解决数学问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:解答题

已知函数.

(1)当时,求函数的最大值;

(2)函数轴交于两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.第三象限角的集合为{α|$π+2kπ<α<\frac{3}{2}π+2kπ$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在复平面中曲线y=x2上有点B1,B2,…,Bn,在实轴上有点A1,A2,…,An;其中A1(1,0)…,An(xn,0)…,且xn≤1,线段AnBn(n=1,2,3,…)都与y轴平行,An+1Bn斜率为2xn(n=1,2,3,…).求:
(1)|$\overrightarrow{{B}_{1}A{\;}_{2}}$+$\overrightarrow{B{\;}_{2}A{\;}_{3}}$+…+$\overrightarrow{{B}_{n}A{\;}_{n+1}}$|=f(n)的表达式;
(2)并计算$\underset{lim}{n→∞}$[f(n)]2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为$\frac{80π}{3}$立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>5)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在矩形ABCD中,AB=1,BC=$\sqrt{3}$,此矩形在地面一直线上滚动,在滚动过程中始终与地面垂直,设直线BC与地面所成角为θ,矩形周边上最高点离地面的距离为f(θ).求:

(1)θ的取值范围;
(2)f(θ)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a2x2+ax-lnx.
(Ⅰ)当a>0时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=a2x2-f(x),且函数g(x)在点x=1处的切线为l,直线l′∥l,且l′在y轴上的截距为1.求证:无论a取任何实数,函数g(x)的图象恒在直线l′的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设O为△ABC内一点,记α=$\frac{{S}_{△BOC}}{{S}_{△ABC}}$,β=$\frac{{S}_{△COA}}{{S}_{△ABC}}$,γ=$\frac{{S}_{△AOB}}{{S}_{△ABC}}$,证明:α$\overrightarrow{OA}$+β$\overrightarrow{OB}$+γ$\overrightarrow{OC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆锥的全面积为底面积的3倍,则该圆锥母线与底面所成角大小为60°.

查看答案和解析>>

同步练习册答案