精英家教网 > 高中数学 > 题目详情
7.如图,在矩形ABCD中,AB=1,BC=$\sqrt{3}$,此矩形在地面一直线上滚动,在滚动过程中始终与地面垂直,设直线BC与地面所成角为θ,矩形周边上最高点离地面的距离为f(θ).求:

(1)θ的取值范围;
(2)f(θ)的表达式.

分析 (1)由题意即可确定θ的取值范围.
(2)连接BD,过D作地面的垂线,垂足为E,在Rt△BDE中,可求∠DBE=θ+$\frac{π}{6}$,DB=2,解三角形即可解得f(θ).

解答 解:(1)BC与地面所成的角,就是直线与平面所成的角,显然角θ的范围是[0,$\frac{π}{2}$].
(2)连接BD,则∠DBC=$\frac{π}{6}$,过D作地面的垂线,垂足为E,在Rt△BDE中,∠DBE=θ+$\frac{π}{6}$,DB=2,
∴f(θ)=2sin(θ+$\frac{π}{6}$),(0$≤θ≤\frac{π}{2}$).

点评 本题主要考查了解三角形,考查了在实际问题中建立三角函数模型,正确做出辅助线是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:填空题

已知三次函数,下列命题正确的是 .

①函数关于原点中心对称;

②以两不同的点为切点作两条互相平行的切线,分别与交于两点,则这四个点的横坐标满足关系

③以为切点,作切线与图像交于点,再以点为切点作直线与图像交于点,再以点作切点作直线与图像交于点,则点横坐标为

④若,函数图像上存在四点,使得以它们为顶点的四边形有且仅有一个正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=cos3(2x+3)的导数是-6cos2(2x+3)sin(2x+3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过抛物线y2=2px(p>0)的焦点F的一条直线交抛物线于点P、Q,设点Q关于x轴的对称点为Q′,准线与X轴的交点是点B,求证:P、Q′、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα、tanβ为是于x的方程x2+px+q=0的两根,则sin2(α+β)+psin(α+β)cos(α+β)+qcos2(α+β)的值为q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆的极坐标方程为ρ=6sinθ,圆心为M,点N的极坐标为(6,$\frac{π}{6}$),则|MN|=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C的圆心在x轴正半轴上,半径为5,且与直线4x+3y+17=0相切.
(1)求圆C的方程;
(2)设点P(-1,$\frac{3}{2}$),过点p作直线l与圆C交于A,B两点,若AB=8,求直线l的方程;
(3)设P是直线x+y+6=0上的点,过P点作圆C的切线PA,PB,切点为A,B.求证:经过A,P,C三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知cosθ=$\frac{1}{4}$,则sin4θ+cos4θ=$\frac{113}{33568}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设不等式组$\left\{\begin{array}{l}{x+y≤\sqrt{2}}\\{x-y≥-\sqrt{2}}\\{y≥0}\end{array}\right.$所表示的区域为M,函数y=$\sqrt{1-{x}^{2}}$的图象与x轴所围成的区域为N,向M内随机投一个点,则该点落在N内的概率为(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.$\frac{π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

同步练习册答案