分析 过O分别作AC,AB的平行线OD,OE,分别交AB于D,交AC于E,则β=$\frac{{S}_{△COA}}{{S}_{△ABC}}$=$\frac{AD}{AB}$,γ=$\frac{{S}_{△AOB}}{{S}_{△ABC}}$=$\frac{AE}{AC}$,利用α+β+γ=1,$\overrightarrow{AO}=\overrightarrow{AD}+\overrightarrow{AE}$,即可证明结论.
解答
证明:过O分别作AC,AB的平行线OD,OE,分别交AB于D,交AC于E,则
β=$\frac{{S}_{△COA}}{{S}_{△ABC}}$=$\frac{AD}{AB}$,γ=$\frac{{S}_{△AOB}}{{S}_{△ABC}}$=$\frac{AE}{AC}$,
∴$\overrightarrow{AO}=\overrightarrow{AD}+\overrightarrow{AE}$=$\frac{AD}{AB}$•$\overrightarrow{AB}$+$\frac{AE}{AC}$•$\overrightarrow{AC}$=$β\overrightarrow{AB}+γ\overrightarrow{AC}$=$β\overrightarrow{OB}+γ\overrightarrow{OC}$$-(β+γ)\overrightarrow{OA}$,
∵α+β+γ=1,
∴α$\overrightarrow{OA}$+β$\overrightarrow{OB}$+γ$\overrightarrow{OC}$=$\overrightarrow{0}$.
点评 本题考查向量在几何中的应用,考查学生分析解决问题的能力,有难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $±\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com