精英家教网 > 高中数学 > 题目详情
8.已知定义在(0,+∞)上的函数f(x),对于任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y)-1.
(1)求f(1)的值;
(2)当x>1,都有f(x)≥1成立,证明f(x)在(0,+∞)上是单调递增函数;
(3)在(2)的条件下,解不等式f(x)<f($\frac{1}{x}$).

分析 (1)令x=y=1,代入f(x•y)=f(x)+f(y)-1,即可得到f(1)的方程,解之即可求得f(1).
(2)设x1,x2∈(0,+∞)且x1<x2,利用定义法证明f(x1)=f($\frac{{x}_{1}}{{x}_{2}}$•x2)=f($\frac{{x}_{1}}{{x}_{2}}$)+f(x2)-1>f(x2),进而由定义得出函数的单调性.
(3)由(2)(x)在(0,+∞)上是单调递增函数,原不等式可转化为0<x<$\frac{1}{x}$,解关于x的不等式,可求.

解答 (1)解;(1)∵对任意x,y∈(0,+∞),都有f(x•y)=f(x)+f(y)-1.
令x=y=1可得f(1)=2f(1)-1.
∴f(1)=1.
(2)证明:设x1>x2>0,则$\frac{{x}_{1}}{{x}_{2}}$>1,
∵当x>1时f(x)≥1.
∴f(x1)=f($\frac{{x}_{1}}{{x}_{2}}$•x2)=f($\frac{{x}_{1}}{{x}_{2}}$)+f(x2)-1>f(x2).
∴函数f(x)在(0,+∞)上单调递增.
(3)解:∵f(x)在(0,+∞)上是单调递增函数,f(x)<f($\frac{1}{x}$),
∴0<x<$\frac{1}{x}$,
∴0<x<1,即不等式的解集为{x|0<x<1}.

点评 本题考点是抽象函数及其应用,考查灵活赋值求值的能力以及灵活变形证明函数单调性的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{25}{36}$D.$\frac{11}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG是斜边为4的等腰直角三角形(E、F是函数图象与x轴的交点,点G在图象上),则f(1)的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a、b、c分别是角A、B、C的对边,若a2+c2=b2+ac,且a:c=($\sqrt{3}$+1):2,求角C的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设随机变量X服从[1,4]上的均匀分布,则P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式log 2 |x-3|<1的解集为{x|1<x<3或3<x<5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简(a+2b+c)3-(a+b)3-(b+c)3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若Sn为等差数列{an}的前n项和,且S4=4a3+2,则公差d的值为(  )
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为12π.

查看答案和解析>>

同步练习册答案