用三段论证明函数在(-∞,+∞)上是增函数.
科目:高中数学 来源: 题型:解答题
已知函数,若存在使得恒成立,则称 是的
一个“下界函数” .
(I)如果函数(t为实数)为的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com