精英家教网 > 高中数学 > 题目详情

已知函数
(1)若x=1时取得极值,求实数的值;
(2)当时,求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围。

(1)  (2)    (3)

解析试题分析:(1)∵,∴,得          
时, ; 当时,
时取得极小值,故符合。               
(2)当时,恒成立,上单调递增,
                          
时,由
,则,∴上单调递减。
,则,∴上单调递增。          
时取得极小值,也是最小值,即
综上所述,                
(3)∵任意,直线都不是曲线的切线,
恒成立,即的最小值大于
的最小值为,∴,故.
考点:利用导数求闭区间上函数的最值;利用导数研究函数的极值.
点评:深刻理解导数的几何意义及熟练利用导数求极值、最值是解题的关键.分类讨论思想和转化思想是解题常用的思想方法,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若上单调递增,在上单调递减,在上单调递增,求实数的值;
(2)当时,求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若函数有极值,求的值;
(2)若函数在区间上为增函数,求的取值范围;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数,函数
(Ⅰ)若函数有极大值32,求实数的值;
(Ⅱ)若对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ) 若存在实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线在点处的切线与x轴交点的横坐标为an
(1)求an
(2)设,求数到的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由曲线所围成的封闭图形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用三段论证明函数在(-∞,+∞)上是增函数.

查看答案和解析>>

同步练习册答案