精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinaxcosax+2
3
cos2ax-
3
(其中a>0),点A,B是y=f(x)图象上相邻的两个最值点,且|AB|=
π2
4
+16

(1)求函数f(x)的解析式;
(2)在锐角三角形△ABC中,f(A)=0,BC=
13
,AB=3,求AC的长.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据|AB|的值,求出f(x)的周期T,利用周期公式即可求出a的值,确定出f(x)解析式;
(2)由f(x)解析式,以及f(A)=0,求出A的度数,再由BC,AB的长,利用余弦定理即可求出AC的长.
解答: 解:(1)f(x)=2sinaxcosax+
3
(2cos2ax-1)=sin2ax+
3
cos2ax=2sin(2ax+
π
3
),
设函数f(x)的最小正周期为T,
由题意得:|AB|=
42+(
T
2
)2
=
π2
4
+16
,解得:T=π,
2a
=π,解得:a=1,
则f(x)=2sin(2x+
π
3
);
(2)∵f(A)=2sin(2A+
π
3
)=0,
∴2A+
π
3
=kπ,k∈Z,
又0<A<
π
2

∴A=
π
3

由余弦定理,得BC2=AB2+AC2-2AB•ACcosA,
又BC=
13
,AB=3,
∴13=9+AC2-2×3×AC×
1
2

解得:AC=4.
点评:此题考查了余弦定理,三角形的周期性及其求法,二倍角的正弦、余弦函数公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=2,∠AOB=
3
OC
=
1
2
OA
+
1
4
OB
,则
OA
OC
的夹角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C的方程为:y2=2px(p>0),焦点为F,过点F作直线交抛物线C于A、B两点,且
AF
=2
F B

(1)若设直线AB的方程为x=ay+
p
2
的形式,求a2的值;
(2)若线段AB的中点到抛物线的准线的距离为
9
4
,求C的方程;
(3)设P(x0,y0)(x0>2)是(2)中所求抛物线C上的动点,定点Q(2,0),线段PQ的垂直平分线与x轴交于点M(m,0),求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},把a1作为新数列{bn}的第一项,把ai或-ai(i=2,3,4,…,n)作为新数列{bn}的第i项,数列{bn}称为数列{an}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,-2,-3,4,5.已知数列{bn}为数列{
1
2n
}(n∈N*)的生成数列,Sn为数列{bn}的前n项和.
(Ⅰ)写出S3的所有可能值;
(Ⅱ)若生成数列{bn}满足S3n=
1
7
(1-
1
8n
),求数列{bn}的通项公式;
(Ⅲ)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为{x|x=
2k-1
2n
,k∈N*,k≤2n-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线Q:y2=2px(p>0)的焦点与椭圆
x2
4
+
y2
3
=1的右焦点相同.
(Ⅰ)求抛物线Q的方程;
(Ⅱ)如图所示,设A、B、C是抛物线Q上任意不同的三点,且点A位于x轴上方,B、C位于x轴下方.直线AB、AC与x轴分别交于点E、F,BF与直线OC、EC分别交于点M、N.记△OBM、△ENF、△MNC的面积依次为S1、S2、S3,求证:S1+S2=S3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1-x2+ln(x+1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2 (k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)短轴位于x轴下方的顶点,过A作斜率为1的直线交椭圆于P点,B点在y轴上且BP∥x轴,且
AB
AP
=9.
(1)若B(0,1),求椭圆的方程;
(2)若B(0,t),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AC=2,AB=3,EC=
5
2
,则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输入m=828,n=345,则输出的实数m的值是(  )
A、68B、69
C、138D、139

查看答案和解析>>

同步练习册答案