精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为

【答案】(﹣1,+∞)
【解析】解:设F(x)=f(x)﹣(2x+4), 则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(﹣1,+∞),
即f(x)>2x+4的解集为(﹣1,+∞).
所以答案是:(﹣1,+∞)
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中为偶函数又在(0,+∞)上是增函数的是(
A.y=( |x|
B.y=x2
C.y=|lnx|
D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),则a,b,c的大小关系正确的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

I)讨论的单调性;

II)当有最大值,且最大值大于,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ).

A. ,“”是“”的必要不充分条件

B. 为真命题”是“为真命题” 的必要不充分条件

C. 命题“,使得”的否定是:“

D. 命题:“”,则是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos( )=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.
(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
(2)求经过⊙O1 , ⊙O2交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期及单调递增区间;

(2)若在锐角中,已知函数的图象经过点,边,求周长的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|,当a<b<c时,f(a)>f(c)>f(b),那么正确的结论是(
A.2a>2b
B.2a>2c
C.2a<2c
D.2a+2c<2

查看答案和解析>>

同步练习册答案