精英家教网 > 高中数学 > 题目详情

【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的长.

【答案】解:(Ⅰ)在△ABC中,根据正弦定理,有
因为 ,所以
又∠ADC=∠B+∠BAD=∠B+60°>60°,
所以∠ADC=120°.…(3分)
于是∠C=180°﹣120°﹣30°=30°,所以∠B=60°.
(Ⅱ)设DC=x,则BD=2x,BC=3x,
于是
在△ABD中,由余弦定理,得 AD2=AB2+BD2﹣2ABBDcosB,
,得x=2.
故DC=2.

【解析】(Ⅰ)由正弦定理有 ,又 ,可得 ,结合∠ADC=∠B+∠BAD=∠B+60°>60°,可求∠ADC,即可求B的值.(Ⅱ)设DC=x,则BD=2x,BC=3x, ,可求 ,由余弦定理即可计算得解DC的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是 (t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

91.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.5

173.0

(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?

(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?

(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?

(4)试判断该函数模型是否能够较好地反映年龄与身高的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

,求函数在区间上的取值范围;

,且对任意的,都有,求实数a的取值范围.

若对任意的,都有,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一次考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是( )

A. 6 B. 36 C. 60 D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有唯一的公共点,求角α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表数据是水的温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的.

x/℃

300

400

500

600

700

800

y/%

40

50

55

60

67

70

(1)画出散点图;

(2)指出x,y是否线性相关,若线性相关,求y关于x的回归方程;

(3)估计水的温度是1000 ℃时,黄酮延长性的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2aln x(aR).

(1)f(x)x=2处取得极值,求a的值;

(2)f(x)的单调区间;

(3)求证:当x>1时, x2+ln x<x3.

查看答案和解析>>

同步练习册答案