精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中

,求函数在区间上的取值范围;

,且对任意的,都有,求实数a的取值范围.

若对任意的,都有,求t的取值范围.

【答案】(1) ; (2); (3) .

【解析】

(1)判断上的单调性,根据单调性求出的最值,得出值域;

(2)令,根据对称轴与区间求出得最大值,令,解出的取值范围;

(3)设函数在区间上最大值为M,最小值为,对任意的,都有等价于,结合二次函数的图象与性质,即可求解

因为

所以在区间上单调减,在区间上单调增,且对任意的,都有

,则

单调减,从而最大值,最小值

所以的取值范围为

单调增,从而最大值,最小值

所以的取值范围为

所以在区间上的取值范围为

“对任意的,都有”等价于“在区间上,”.

,则

所以在区间上单调减,在区间上单调增.

,即时,

,得

从而

,即时,由,得

从而

综上,a的取值范围为区间

设函数在区间上的最大值为M,最小值为m,

所以“对任意的,都有”等价于“”.

时,

,得

从而

时,

,得

从而

时,

,得

从而

时,

,得

从而

综上,t的取值范围为区间

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:

分类

杂质高

杂质低

旧设备

37

121

新设备

22

202

根据以上数据,则(  )

A. 含杂质的高低与设备改造有关

B. 含杂质的高低与设备改造无关

C. 设备是否改造决定含杂质的高低

D. 以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:∥平面EFGH;

(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2, ),则f(4)的值等于
④已知向量 =(3,﹣4), =(2,1),则向量 在向量 方向上的投影是
说法错误的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.

(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有唯一的公共点,求角α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F(x)=x(-1,+∞).

(1)F(x)的单调区间;

(2)求函数F(x)[1,5]上的最值.

查看答案和解析>>

同步练习册答案