精英家教网 > 高中数学 > 题目详情

已知△ABC中,AB=,BC=1,sinC=cosC,则△ABC的面积为(  )

A. B. C. D.

 

A

【解析】由sinC=cosC得tanC=,又0<C<π,所以C=.根据正弦定理可得,即=2,所以sinA=,因为AB>BC,所以C>A,所以A=,则B=,所以△ABC为直角三角形,S△ABC=××1=

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:解答题

已知向量m=(2cosx, cosx-sinx),n=(sin(x+),sinx),且满足f(x)=m·n.

(1)求函数y=f(x)的单调递增区间;

(2)设△ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且·,求边BC的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-1向量的概念及运算(解析版) 题型:选择题

对于向量a、b、c和实数λ,下列命题中真命题是(  )

A.若a·b=0,则a=0或b=0

B.若λa=0,则λ=0或a=0

C.若a2=b2,则a=b或a=-b

D.若a·b=a·c,则b=c

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:填空题

如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:填空题

在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B-A)=sin2A,则△ABC的形状为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-6简单的三角恒等变换(解析版) 题型:选择题

在斜三角形ABC中,sinA=-cosB·cosC,且tanB·tanC=1-,则角A的值为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-6简单的三角恒等变换(解析版) 题型:填空题

已知点P(sinπ,cosπ)落在角θ的终边上,且θ∈[0,2π),则tan(θ+)的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:选择题

在△ABC中,若tanAtanB=tanA+tanB+1,则cosC的值是(  )

A.- B. C. D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:填空题

里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.

 

查看答案和解析>>

同步练习册答案