【题目】为了提高学生的身体素质,某校高一、高二两个年级共名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取名和名学生进行测试.下表是高二年级的名学生的测试数据(单位:个/分钟):
学生编号 | 1 | 2 | 3 | 4 | 5 |
跳绳个数 | 179 | 181 | 168 | 177 | 183 |
踢毽个数 | 85 | 78 | 79 | 72 | 80 |
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳个/分钟,踢毽个/分钟.当,且时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述名学生中,随机抽取人,求抽取的名学生中为“span>运动达人”的人数的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数y=f(x)的单调区间;
(2)若对于x∈(0,+∞)都有成立,试求m的取值范围;
(3)记g(x)=f(x)+x﹣n﹣3.当m=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,是等边三角形,D.E分别是BC.AC上两点,且,与AD交于点H,链接CH.
(1)当时,求的值;
(2)如图2,当时,__________; __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.
(1)证明:平面平面;
(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一些选手参加数学竞赛,其中有些选手互相认识,有些选手互相不认识,而任何两个不相识的选手都恰有两个共同的熟人.若与认识,但没有共同的熟人,求证:、认识的熟人一样多.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的最小正周期为,且其图象关于直线对称,则在下面结论中正确的个数是( )
①图象关于点对称;
②图象关于点对称;
③在上是增函数;
④在上是增函数;
⑤由可得必是的整数倍.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com