【题目】已知自然数
有20个正整数因子(包括1和本身),它们从小到大依次记作
,
,
,…,
,且序号为
的因数为
.求自然数
.
【答案】2000
【解析】
因为
是
的因数,
所以,
与
是
的因数.
于是,
,
.
∴
.![]()
∵
,
∴
.
∴
.此时,
,
.
由
知,
含有1,2,4,5,10,20这六个正整数因子,
所以
至少含有2和5这两个质因子.
又
有20个正因子,
,
故
可设为
(
为不等于2和5的质数)、
、
或
.
(1)当
时,
①当
时,
,
,…,
依次为1,2,3,4,5,6,8,10.此时,
,与
相矛盾.
②当
时,
,
,…,
依次为1,2,4,5,7,8,10,14.此时,
,与
相矛盾.
③当
时,
,
,
,…,
依次为1,2,4,5,8,10,
,16或为1,2,4,5,8,10,16,
,与
相矛盾.
④当
时,
的正因数为1,2,4,5,8,10,16,20,40,80,
,
,
,
,
,….
∴
,
,
,
.
∴
.
于是,
,不为质数,
故
.
(2)当
时,
,
,
,
.不满足
.
(3)当
时,
,与
相矛盾.
(4)当
时,
,
,
,
,
,
,
.显然满足
,
.
∴
.
故所求的自然数
为2000.
科目:高中数学 来源: 题型:
【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.
(1)求整个过程中恰好取到2个白球的概率;
(2)求取球次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布
,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组
,第二组
,…,第六组
,得到如图所示的频率分布直方图:
![]()
(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的概率.
附:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高学生的身体素质,某校高一、高二两个年级共
名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取
名和
名学生进行测试.下表是高二年级的
名学生的测试数据(单位:个/分钟):
学生编号 | 1 | 2 | 3 | 4 | 5 |
跳绳个数 | 179 | 181 | 168 | 177 | 183 |
踢毽个数 | 85 | 78 | 79 | 72 | 80 |
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳
个/分钟,踢毽
个/分钟.当
,且
时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述
名学生中,随机抽取
人,求抽取的
名学生中为“span>运动达人”的人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率与双曲线
的离心率互为倒数,
分别为椭圆的左、右顶点,且
.
(1)求椭圆
的方程;
(2)已知过左顶点
的直线
与椭圆
另交于点
,与
轴交于点
,在平面内是否存在一定点
,使得
恒成立?若存在,求出该点的坐标,并求
面积的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市为拟定出台“房产限购的年龄政策”
为了解人们对“房产限购年龄政策”的态度,对年龄在
岁的人群中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如下:
![]()
年龄 |
|
|
|
|
|
支持的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填
列联表,并判断能否在犯错误的概率不超过
的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异;
44岁以下 | 44岁及44岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会.现从这8人中随机抽2人.
①抽到1人是44岁以下时,求抽到的另一人是44岁以上的概率.
②记抽到44岁以上的人数为X,求随机变量X的分布列及数学期望.
参考数据:
|
|
|
|
|
|
|
|
|
|
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com