精英家教网 > 高中数学 > 题目详情

【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.

1)求整个过程中恰好取到2个白球的概率;

2)求取球次数的分布列和数学期望.

【答案】12)详解见解析

【解析】

1)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,然后结合有放回的抽取求概率即可;

2)先确定取球次数的可能取值,然后求其对应的概率,然后求出分布列和数学期望即可.

解:(1)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,所以恰有两次取到白球的概率为.

2)设取球次数为,则的可能取值为123

,

的分布列为:

1

2

3

取球次数的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5个匣子,每个匣子有一把钥匙,并且钥匙不能通用.如果随意在每一个匣内放入一把钥匙,然后把匣子全都锁上.现在允许砸开一个匣子,使得能相继用钥匙打开其余4个匣子,那么钥匙的放法有______种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分高于省一本线分值对比表:

年份

2015

2016

2017

2018

2019

年份代码

1

2

3

4

5

录取平均分高于省一本线分值

28

34

41

47

50

1)根据上表数据可知,之间存在线性相关关系,求关于的线性回归方程;

2)假设2020年该省一本线为520分,利用(1)中求出的回归方程预测2020年该大学录取平均分.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形的面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,过点的直线的参数方程为:为参数), 以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,直线与曲线分别交于两点.

1)写出曲线的普通方程;

2)若成等比数列,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是等边三角形,D.E分别是BC.AC上两点,且AD交于点H,链接CH.

1)当时,求的值;

2)如图2,当时,__________ __________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某造船公司年造船量是20艘,已知造船艘的产值函数为 (单位:万元),成本函数为(单位:万元),又在经济学中,函数的边际函数定义为.

(1)求利润函数及边际利润函数.(提示:利润=产值-成本)

(2)问年造船量安排多少艘时,可使公司造船的年利润最大?

(3)求边际利润函数的单调递减区间,并说明单调递减在本题中的实际意义是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知自然数20个正整数因子(包括1和本身),它们从小到大依次记作,…,,且序号为的因数为.求自然数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A. B. C的对边分别为a,b,c,己知=b(c-asinC)。

(1)求角A的大小;

(2)若b+c=,求△ABC的面积。

查看答案和解析>>

同步练习册答案