【题目】某造船公司年造船量是20艘,已知造船
艘的产值函数为
(单位:万元),成本函数为
(单位:万元),又在经济学中,函数
的边际函数
定义为
.
(1)求利润函数
及边际利润函数
.(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数
的单调递减区间,并说明单调递减在本题中的实际意义是什么?
【答案】(1)
且
;(2)12;(3)
且
.
【解析】
(1)先根据利润=产值-成本求P(x),再求边际利润函数
.(2)利用导数求年造船量安排多少艘时,可使公司造船的年利润最大.(3)利用二次函数求边际利润函数
的单调递减区间,并说明单调递减在本题中的实际意义.
(1)P(x)=R(x)-C(x)=-10x3+45x2+3240x-5(x∈N+,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3275(x∈N+,且1≤x≤19).
(2)P'(x)=-30x2+90x+3240=-30(x-12)(x+9),
∵x>0,∴P'(x)=0时,x=12,
∴当0<x<12时,P'(x)>0,
当x>12时,P'(x)<0,∴x=12时,P(x)有最大值.
即年造船量安排12艘时,可使公司造船的年利润最大.
(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.所以,当x≥1时,MP(x)是减函数,
所以单调减区间为[1,19],且x∈N+.
MP(x)是减函数的实际意义是:随着产量的增加,每艘船的利润与前一艘船的利润比较,利润在减少.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
(
)的上顶点为
,圆
经过点
.
![]()
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
,
两点,过点
作直线
的垂线
交圆
于另一点
.若△PQN的面积为3,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
是偶函数,求
的值;
(2)设函数
,当
时,
有且只有一个实数根,求
的取值范围;
(3)若关于
的方程
在区间
上有两个不相等的实数根
,
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.
(1)求整个过程中恰好取到2个白球的概率;
(2)求取球次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义城为R的函数
,若满足:①
;②当
,且
时,都有
;③当
且
时,都有
,则称
为“偏对称函数”.下列函数是“偏对称函数”的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布
,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组
,第二组
,…,第六组
,得到如图所示的频率分布直方图:
![]()
(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的概率.
附:若
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com