精英家教网 > 高中数学 > 题目详情

【题目】设函数的最小正周期为,且其图象关于直线对称,则在下面结论中正确的个数是(

①图象关于点对称;

②图象关于点对称;

③在上是增函数;

④在上是增函数;

⑤由可得必是的整数倍.

A.4B.3C.2D.1

【答案】C

【解析】

根据最小正周期及对称轴,可求得函数解析式,由正弦函数的图象与性质即可判断选项.

因为函数的最小正周期为

所以

函数图象关于直线对称,

因为,所以当时得

由正弦函数的图像与性质可知,对称中心为,解得

时,所以对称中心为,故②正确,①错误;

由正弦函数的图像与性质可知,当时,函数单增,

解得,当时,单调递增区间为

因为所以④正确,③错误;

因为最小正周期为,若,可得必是的整数倍,所以⑤错误.

综上可知,正确的为②④,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查患胃病是否与生活不规律有关,在患胃病与生活不规律这两个分类变量的计算中,下列说法正确的是(

A. 越大,患胃病与生活不规律没有关系的可信程度越大.

B. 越大,患胃病与生活不规律有关系的可信程度越小.

C.若计算得 ,经查临界值表知 ,则在 个生活不规律的人中必有 人患胃病.

D.从统计量中得知有 的把握认为患胃病与生活不规律有关,是指有 的可能性使得推断出现错误.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取名和名学生进行测试.下表是高二年级的名学生的测试数据(单位:个/分钟):

学生编号

1

2

3

4

5

跳绳个数

179

181

168

177

183

踢毽个数

85

78

79

72

80

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述名学生中,随机抽取人,求抽取的名学生中为span>运动达人的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断的单调性,并证明之;

2)若存在实数,使得函数在区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,设函数,且的图象过点和点.

(Ⅰ)求的值;

(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率与双曲线的离心率互为倒数,分别为椭圆的左、右顶点,且.

1)求椭圆的方程;

2)已知过左顶点的直线与椭圆另交于点,与轴交于点,在平面内是否存在一定点,使得恒成立?若存在,求出该点的坐标,并求面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:①);②当)时,;③当)时,,记数列的前项和为.

1)求的值;

2)若,求的最小值;

3)求证:的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,函数

1)当函数图象与轴相切时,求实数的值;

2)若函数恒成立,求实数的取值范围;

3)当时,讨论函数在区间上的零点个数.

查看答案和解析>>

同步练习册答案