精英家教网 > 高中数学 > 题目详情

【题目】已知圆O:x2+y2=4,点F( ,0),以线段MF为直径的圆内切于圆O,记点M的轨迹为C
(1)求曲线C的方程;
(2)若过F的直线l与曲线C交于A,B两点,问:在x轴上是否存在点N,使得 为定值?若存在,求出点N坐标;若不存在,说明理由.

【答案】
(1)解:设FM的中点为Q,切点为G,连OQ,QG,

则|OQ|+|QG|=|OG|=2,取F关于y轴的对称点F′,连F′M,

故|F′M|+|MF|=2(|OQ|+|QG|)=4.

点M的轨迹是以F′,F为焦点,长轴长为4的椭圆.

其中,a=2,c=,b=1,则曲线C的方程为 +y2=1


(2)解:当直线l的斜率存在时,设其方程为y=k(x﹣ ),

A(x1,y1),B(x2,y2),

联立 ,得

则△>0,

若存在定点N(m,0)满足条件,

则有 =(x1﹣m)(x2﹣m)+y1y2

=x1x2+

=

= =

如果要上式为定值,则必须有 ,解得m=

此时 =

验证当直线l斜率不存在时,也符合.

故存在点N( ,0)满足 为定值.


【解析】(1)设FM的中点为Q,切点为G,连OQ,QG,通过|OQ|+|QG|=|OG|=2,推出|F′M|+|MF|=4.说明点M的轨迹是以F′,F为焦点,长轴长为4的椭圆.然后求解曲线C的方程;(2)当直线l的斜率存在时,设其方程为y=k(x﹣ ),联立直线方程和椭圆方程,利用根与系数的关系得到A,B的横坐标的和与积,代入 ,由 为定值求得m值,验证斜率不存在时适合得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn},满足a1=b1=3,an+1﹣an= =3,n∈N* , 若数列{cn}满足cn= ,则c2017=(
A.92016
B.272016
C.92017
D.272017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. 288 B. 144 C. 720 D. 360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是{x|x≠0},对定义域内的任意都有f(·)=f()+f(),且当x>1时,f(x)>0,f(2)=1.

(1)证明:(x)是偶函数;

(2)证明:(x)在(0,+∞)上是增函数;

(3)解不等式(2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,椭圆C:的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,|OB|,|OF2|,|AB|成等比数列,椭圆C上的点到焦点F2的最短距离为

(1)求椭圆C的标准方程;

(2)设T为直线x=-3上任意一点,过F1的直线交椭圆C于点P,Q,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1axby+4=0,l2:(a-1)xyb=0.求分别满足下列条件的ab的值:

(1)直线l1过点(-3,-1),并且直线l1l2垂直;则a____b_______

(2)直线l1与直线l2平行,并且直线l2y轴上的截距为3.a____b_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx
(1)当a=b= 时,求函数f(x)的单调区间;
(2)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4,F为拋物线的焦点,点N(l,l),当点P在直线l:x﹣y=2上运动时, 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案