精英家教网 > 高中数学 > 题目详情
20.已知f(x)=x+$\frac{9}{x}$+3,g(x)=-x2+6x,若存在正数m,n使得f(m)=g(n),则m+$\frac{1}{n}$=$\frac{10}{3}$.

分析 求出函数f(x)=x+$\frac{9}{x}$+3在x>0时的最小值,g(x)=-x2+6x,在x>0时的最大值,求出m,n即可得到m+$\frac{1}{n}$.

解答 解:在x>0时,f(x)=x+$\frac{9}{x}$+3≥2$\sqrt{x•\frac{9}{x}}+3$=9,最小值为9,此时x=3.
g(x)=-x2+6x=-(x-3)2+9≤9,函数的最大值为9,此时x=3,
存在正数m,n使得f(m)=g(n),
可得m=n=3,m+$\frac{1}{n}$=$\frac{10}{3}$.
故答案为:$\frac{10}{3}$.

点评 本题考查函数与方程的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+2,x≥3}\\{{2}^{x},x<3}\end{array}\right.$,若f(a)=4,则a的值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在用“五点法”画函数f(x)=Asinx(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填人了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x
Asin(ωx+φ)02-20
(1)请将上表中①②③④处数据补充完整,并直接写出函数f(x)的解析式;
  (2)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{2}{3}$,再将所得图象向左平移π个单位,得到y=g(x)的图象,求g(x)在z∈[-2π,2π]时的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|ax2+2x+1=0,a∈R},有且只有一个真子集,则a的取值集合为{0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[0,1]上单调递增,设a=f(3),b=f(1.2),c=f(2),则a,b,c大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三棱锥A-BCD的顶点都在球O的球面上,AB⊥平面BCD,∠BCD=90°,AB=BC=CD=2,则球O的表面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线l:y=kx+1(k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是(  )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)的定义域为R,f(-1)=2015,对任意的x∈R.都有f′(x)<3x2成立,则不等式f(x)<x3+2016的解集为(  )
A.(-1,+∞)B.(-1,0)C.(-∞,-1)D.(-∞,+∞)

查看答案和解析>>

同步练习册答案