精英家教网 > 高中数学 > 题目详情

【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.

(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;

(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.

【答案】(1)(2) 的分布列见解析,期望

【解析】试题分析:

(1)由题意结合对立事件的概率公式可得至少有1人成绩是“优秀”的概率是

(2) 的取值可能为0,1,2,3,结合超几何分布的概率公式可得函数的分布列,然后可求得X的数学期望为 .

试题解析:

(1)由茎叶图知,抽取的10人中成绩是“优秀”的有6人,频率为,依题意,从我校学生中任选1人,成绩是“优秀”的概率为,记事件表示“在我校学生中任选3人,至少1人成绩是优良”,则

(2)由题意可得, 的取值可能为0,1,2,3

,

,

,

0

1

2

3

,

的分布列为:

期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)讨论函数的单调性;

)若函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017唐山模拟】如图,ABCDA1B1C1D1为正方体,连接BD,AC1,B1D1 CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④CB1与BD为异面直线,其中所有正确结论的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图像是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数,

(1)若函数的图象过点,且方程有且只有一个实根,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间(0,+∞)上的函数f(x)=|t(x+ )﹣5|,其中常数t>0.
(1)若函数f(x)分别在区间(0,2),(2,+∞)上单调,试求实数t的取值范围;
(2)当t=1时,方程f(x)=m有四个不相等的实根x1 , x2 , x3 , x4 . ①求四根之积x1x2x3x4的值;
②在[1,4]上是否存在实数a,b(a<b),使得f(x)在[a,b]上单调且取值范围为[ma,mb]?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题: ①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是 . (注:把你认为不正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边 ,那么下面说法正确的是( )

A. 平面平面

B. 四面体的体积是

C. 二面角的正切值是

D. 与平面所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,矩形所在平面与梯形所在平面垂直,且 的中点.

(1)证明: 平面

(2)证明: 平面.

查看答案和解析>>

同步练习册答案