精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意m∈R的都不是曲线y=f(x)的切线,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:(1)求导可得f′(x)=3x2-3,解3x2-3=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值;
(2)分析对任意的m直线x+y+m=0都不是曲线y=f(x)的切线的含义,即可求出函数f(x)=x3-3ax(a∈R)的导函数,使直线与其不相交即可.
解答: 解:(1)令f′(x)=3x2-3=0,得x=±1,
x∈(0,1)时,f′(x)<0,x∈(-∞,0)∪(1,+∞)时,f′(x)>0,
∴f(x)的极小值为f(1)=-2;
(2)f(x)=x3-3ax(a∈R),则f′(x)=3x2-3a
若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,
又抛物线开口向上则必在直线上面,即最小值大于直线斜率,
则当x=0时取最大值,-3a>-1,
则a的取值范围为a
1
3
点评:本题考查函数的极值问题,考查了函数与方程的综合应用,以及函数导函数的计算,属于综合性问题,计算量小但有一定的难度,属于中等题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:随机变量x~N(2,σ2),且p(x>3)=0.3010,则p(1≤x<2)=0.1990,命题q:若向量
a
b
满足|
a
|=1,|
b
|=3,
a
b
夹角为
π
3
,则|
a
+
b
|=
7
.下面结论正确的是(  )
A、(¬p)∨q是真命题
B、p∨q是假命题
C、p∧q是真命题
D、p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8内有一点P(-1,2),AB为过点P且倾斜角为α的弦.
(1)当弦AB被点P平分时,求直线AB的方程;
(2)当α=135°时,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

试做一个上端开口的圆柱形容器,它的净容积为V,壁厚为a(包括侧壁和底部),其中V和a均为常数.问容器内壁半径为多少时,所用的材料最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=f(x)的图象的一部分如图所示
(1)根据图象写出f(x)在区间[-1,4]上的值域;
(2)根据图象求y=f(x)的解析式;
(3)当k∈R时,试探讨关于x的方程f(x)-k=0在(-1,4]上的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若a≠0,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≥0,b≥0,c≥0,求证:
a2+ab+b2
+
b2+bc+c2
≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=|x|+|x+1|的最小值为m
(Ⅰ)求m的值;
(Ⅱ)x,y,z∈R,且2x+3y+3z=m求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

图中的程序执行后输出的结果是
 

查看答案和解析>>

同步练习册答案