精英家教网 > 高中数学 > 题目详情
11.命题“?x∈N,x≥0”的否定是(  )
A.?x∈N,x<0B.?x∉N,x≥0C.?x∈N,x<0D.?x∈N,x>0

分析 根据特称命题的否定为全称命题,分布对量词和结论进行否定即可

解答 解:根据特称命题的否定为全称命题可知,““?x∈N,x≥0”的否定是?x∈N,x<0
故选:C

点评 本题主要考查了全称命题与特称命题的否定的应用,属于基础试题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}的前n项为Sn,已知S13>0,S14<0,若ak•ak+1<0,则k=(  )
A.6B.7C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用数学归纳法证明:(3n+1)•7n-1(n∈N*)能被9整除.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,A=$\frac{π}{4}$,b2sin C=4$\sqrt{2}$sin B,则△ABC的面积为(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=3x+2sinx,x∈(-2,2),如果f(a-1)+f(1-2a)<0成立,则实数a的取值范围为$({0,\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={-1,0,1},B={-2,-1,0,1,2},现从集合A,B中各任取一个数.
(1)求这两数之和为0的概率;
(2)若从集合A,B中取出的数分别记为a,b,求方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$只有一个解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(sin2x)+$\sqrt{9-{x^2}}$的定义域是(  )
A.[-3,3]B.(0,$\frac{π}{2}$)C.[-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$)D.(-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1=0,an+1=an+2n,那么a2009的值是(  )
A.2 008×2009B.2008×2007C.2009×2 010D.20092

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆ρ=4cosθ与圆ρ=2sinθ交于O,A两点.
(Ⅰ)求直线OA的斜率;
(Ⅱ)过O点作OA的垂线分别交两圆于点B,C,求|BC|.

查看答案和解析>>

同步练习册答案