【题目】某校高二理科1班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布
,数学成绩的频率分布直方图如图.
![]()
(1)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?
(2)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有X人,求X的分布列和数学期望;
(3)根据(1)(2)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?
语文优秀 | 语文不优秀 | 合计 | |
数学优秀 | |||
数学不优秀 | |||
合计 |
附:①若
,则
,
;②
;
③
| 0.1 | 0.05 | 0.025 | 0.010 | p>0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)语文成绩优秀的同学有
人,数学成绩优秀的同学有
人.(2)分布列见解析,
;(3)没有
以上的把握认为语文成绩优秀的同学,数学成绩也优秀.
【解析】
(1)语文成绩服从正态分布,根据正态分布的
原则可得语文成绩优秀的概型及人数,根据数学成绩的频率分布直方图可以计算数学成绩优秀的概率及人数;
(2)语文和数学两科都优秀的有4人,则可算出单科优秀的学生人数,从中随机抽取3人,则3人中两科都优秀的可能为0、1、2、3四种情况,服从超几何分布,利用概率公式分别求出概率,即可写出分布列及数学期望;
(3)先完成列联表,利用公式求出卡方的值比较参考数据即可得出结论;
解:(1)因为语文成绩服从正态分布![]()
所以语文成绩优秀的概率![]()
数学成绩优秀的概率![]()
所以语文成绩优秀的同学有
人,
数学成绩优秀的同学有
人.
(2)语文数学两科都优秀的有4人,单科优秀的有10人,
的所有可能取值为0、1、2、3,
,
,
,![]()
所以
的分布列为:
|
|
|
|
|
|
|
|
|
|
![]()
(3)
列联表:
语文优秀 | 语文不优秀 | 合计 | |
数学优秀 |
|
|
|
数学不优秀 |
|
|
|
|
|
|
![]()
所以没有
以上的把握认为语文成绩优秀的同学,数学成绩也优秀.
科目:高中数学 来源: 题型:
【题目】某公司为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t百万元,可增加销售额约为
百万元.
(Ⅰ)若该公司将一年的广告费控制在4百万元之内,则应投入多少广告费,才能使该公司由此增加的收益最大?
(Ⅱ)现该公司准备共投入5百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费
百万元,可增加的销售额约为
百万元,请设计一个资金分配方案,使该公司由此增加的收益最大.
(注:收益=销售额-投入,这里除了广告费和技术改造费,不考虑其他的投入)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
(
),左、右焦点分别是
、
且
,以
为圆心,3为半径的圆与以
为圆心,1为半径的圆相交于椭圆
上的点![]()
(1)求椭圆
的方程;
(2)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点![]()
①求
的值;
②令
,求
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中:
①若
,满足
,则
的最大值为
;
②若
,则函数
的最小值为![]()
③若
,满足
,则
的最小值为![]()
④函数
的最小值为![]()
正确的有__________.(把你认为正确的序号全部写上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com