精英家教网 > 高中数学 > 题目详情
2.等差数列{an}的前n项和为Sn,且S2=4,S4=16,数列{bn}满足bn=an+an+1,则数列{bn}的前9和T9=180.

分析 设等差数列{an}的公差为d,由bn=an+an+1,bn+1=an+1+an+2,可得bn+1-bn=an+1+an+2-an-an+1=2d为常数,因此数列{bn}也为等差数列.根据等差数列{an}的前n项和为Sn,且S2=4,S4=16,即可得出.

解答 解:设等差数列{an}的公差为d,因为bn=an+an+1,所以bn+1=an+1+an+2
两式相减bn+1-bn=an+1+an+2-an-an+1=2d为常数,
所以数列{bn}也为等差数列.
因为{an}为等差数列,且S2=4,S4=16,所以b1=a1+a2=S2=4,b3=a3+a4=S4-S2=12,
所以等差数列{bn}的公差$2d=\frac{{{b_3}-{b_1}}}{2}=4$,
所以前n项和公式为${T_n}=4n+\frac{{({n-1})n}}{2}×4$=2n2+2n,
所以T9=180.
故答案为:180.

点评 本题考查了等差数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x3+ax2+bx+a2在x=-1处有极值8,则f(1)等于(  )
A.-4B.16C.-4或16D.16或18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知Z是复数,|Z-2+i|=$\sqrt{3}$,则|z|的取值范围[$\sqrt{5}-\sqrt{3}$,$\sqrt{5}+\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个正四面体的骰子,四个面分别写有数字3,4,4,5,则将其投掷两次,骰子与桌面接触面上的数字之和的方差是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin(-870°)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化简后等于(  )
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用数学归纳法证明:1+a+a2+…+an+1=$\frac{{1-}^{{a}^{n+2}}}{1-a}$(a≠1),在验证n=1时,左端计算所得的式子是(  )
A.1B.1+aC.1+a+a2D.1+a+a2+a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C的方程记为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点P($\sqrt{3}$,0)在双曲线上.离心率为e=2.
(1)求双曲线方程;
(2)设双曲线C的虚轴的上、下端点分别为B1,B2(如图)点A、B在双曲线上,且$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,当$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0时,求直线AB的方程.

查看答案和解析>>

同步练习册答案