精英家教网 > 高中数学 > 题目详情
12.已知双曲线C的方程记为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点P($\sqrt{3}$,0)在双曲线上.离心率为e=2.
(1)求双曲线方程;
(2)设双曲线C的虚轴的上、下端点分别为B1,B2(如图)点A、B在双曲线上,且$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,当$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0时,求直线AB的方程.

分析 (1)根据双曲线的性质,即可求得a和b的值,求得双曲线的方程;
(2)将直线代入双曲线方程,利用韦达定理及向量数量积的坐标运算,即可求得k的值,求得直线AB的方程.

解答 解:(1)由已知a=$\sqrt{3}$,e=2,c=2$\sqrt{3}$,
∴b2=c2-a2=9,
∴双曲线方程$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$;
(2)由B1(0,3),B2(0,-3),$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,
∴A,B1,B2三点共线,设方程为y=kx-3
由$\left\{\begin{array}{l}{y=kx-3}\\{\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1}\end{array}\right.$,整理得(3-k2)x2+6kx-18=0,
设A(x1,y1),B(x2,y2),由k≠±$\sqrt{3}$,
则x1+x2=$\frac{6k}{{k}^{2}-3}$,x1x2=$\frac{18}{{k}^{2}-3}$,
y1+y2=k(x1+x2)-6=$\frac{18}{{k}^{2}-3}$,
y1y2=k2x1x2-3k(x1+x2)+9=9,由$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0,则x1x2+y1y2-3(y1+y2)+9=0,
∴k=±$\sqrt{5}$,由△>0,
∴所求AB直线为:y=±$\sqrt{5}$x-3.

点评 本题考查双曲线的简单几何性质,直线与双曲线的位置关系,考查向量坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.等差数列{an}的前n项和为Sn,且S2=4,S4=16,数列{bn}满足bn=an+an+1,则数列{bn}的前9和T9=180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(1-x-5y)5的展开式中不含x的项的系数和为(  )(结果化成最简形式).
A.1024B.-1024C.1025D.-1028

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log3$\frac{1+x}{a-x}$为其定义域内的奇函数.
(1)求实数a的值;
(2)求不等式f(x)>1的解集;
(3)证明:$f(\frac{1}{3})$为无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某数学老师在分析上期末考试成绩时发现:本班的数学成绩(x)与总成绩(y)之间满足线性回归方程:$\hat y=1.8x+332$,则下列说法中正确的是(  )
A.某同学数学成绩好,则总成绩一定也好
B.若该班的数学平均分为110分,则总成绩平均分一定为530分
C.若某同学的数学成绩为110分,则他的总成绩一定为530分
D.本次统计中的相关系数为1.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量X的概率分布列如表,则P(|X-3|=1)(  )
X1234
P$\frac{1}{3}$m$\frac{1}{4}$$\frac{1}{6}$
A.$\frac{7}{12}$B.$\frac{5}{12}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若函数g(x)=f(a+sinx)+f(2cos2x-3)在(0,π)上有零点,则a的取值范围是[$\frac{7}{8}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值
(Ⅱ)求f(x)在区间[0,2]上的最小值以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{x^3}{3}+{x^2}-3x-\frac{2}{3}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)用反证法证明:在[-1,1]上,不存在不同的两点(x1,f(x1)),(x2,f(x2)),使得f(x)的图象在这两点处的切线相互平行.

查看答案和解析>>

同步练习册答案