精英家教网 > 高中数学 > 题目详情
4.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若函数g(x)=f(a+sinx)+f(2cos2x-3)在(0,π)上有零点,则a的取值范围是[$\frac{7}{8}$,2].

分析 由f(0)=0可知2cos2x+sinx+a-3=0在(0,π)上有解,将问题转化为求h(x)=-2cos2x-sinx+3的值域解决.

解答 解:g(x)=f(a+sinx)+f(2cos2x-3)=f(2cos2x+sinx+a-3),
∵f(x+y)=f(x)+f(y),∴f(0)=2f(0),∴f(0)=0,
∵g(x)在(0,π)上有零点,
∴2cos2x+sinx+a-3=0在(0,π)上有解,
即a=-2cos2x-sinx+3在(0,π)上有解,
设h(x)=-2cos2x-sinx+3=2sin2x-sinx+1=2(sinx-$\frac{1}{4}$)2+$\frac{7}{8}$,
∵x∈(0,π),∴sinx∈(0,1],
∴$\frac{7}{8}$≤h(x)≤2.
故答案为[$\frac{7}{8}$,2].

点评 本题考查了函数存在性问题与函数最值计算,换元法解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)求与直线3x+4y+1=0平行且过(1,2)的直线方程;
(2)求与直线2x+y-10=0垂直且过(2,1)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C的方程记为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点P($\sqrt{3}$,0)在双曲线上.离心率为e=2.
(1)求双曲线方程;
(2)设双曲线C的虚轴的上、下端点分别为B1,B2(如图)点A、B在双曲线上,且$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,当$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x=15°,则sin4x-cos4x的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(1)用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{DE}$;
(2)设AB=9,AC=6,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:ax2+y2=2的焦点在x轴上,设坐标原点为O,椭圆C的左焦点为F(-2,0).
(1)求椭圆C的离心率;
(2)分别过F作两条相互垂直的直线l1,l2,且l1交椭圆C于A,B两点,l2交直线x=-3于点D,问四边形OADB能否为平行四边形?若能,求出其面积,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F(-1,0),直线l:x=1,动点P到点F的距离等于它到直线l的距离.
(Ⅰ)试判断点P的轨迹C的形状,并写出其方程.
(Ⅱ)是否存在过N(-4,-2)的直线m,使得直线m所截得的弦AB恰好被点N所平分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求椭圆25x2+y2=25的长轴和短轴的长、焦点和顶点坐标.

查看答案和解析>>

同步练习册答案