精英家教网 > 高中数学 > 题目详情
19.定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,$f(\frac{x}{3})=\frac{1}{2}f(x)$,且当0≤x1<x2≤1时,有f(x1)≤f(x2),则$f(\frac{1}{2016})$=(  )
A.$\frac{1}{32}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{2016}$

分析 依题意,可得f($\frac{1}{2}$)=f($\frac{1}{3}$)=$\frac{1}{2}$,再由当0≤x1<x2≤1时,有f(x1)≤f(x2),可得f($\frac{1}{{3}^{7}}$)=$\frac{1}{2}$f($\frac{1}{{3}^{6}}$)=$\frac{1}{{2}^{2}}$f($\frac{1}{{3}^{5}}$)=…=$\frac{1}{{2}^{7}}$f(1)=$\frac{1}{{2}^{7}}$=$\frac{1}{128}$,从而可得答案.

解答 ∵定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,$f(\frac{x}{3})=\frac{1}{2}f(x)$,
∴f(1)+f(0)=1,∴f(1)=1;
f($\frac{1}{2}$)+f(1-$\frac{1}{2}$)=1,∴f($\frac{1}{2}$)=$\frac{1}{2}$;
f($\frac{1}{3}$)=$\frac{1}{2}$f(1),
∴f($\frac{1}{2}$)=f($\frac{1}{3}$)=$\frac{1}{2}$;
∵$\frac{1}{1458}$>$\frac{1}{2016}$>$\frac{1}{2187}$,且当0≤x1<x2≤1时,有f(x1)≤f(x2),
∴f($\frac{1}{1458}$)<f($\frac{1}{2016}$)<f($\frac{1}{2187}$),
又∵f($\frac{1}{1458}$)=$\frac{1}{2}$f($\frac{1}{486}$)=$\frac{1}{{2}^{2}}$f(162)=…=$\frac{1}{{2}^{6}}$f($\frac{1}{2}$)=$\frac{1}{{2}^{7}}$=$\frac{1}{128}$.
f($\frac{1}{{3}^{7}}$)=$\frac{1}{2}$f($\frac{1}{{3}^{6}}$)=$\frac{1}{{2}^{2}}$f($\frac{1}{{3}^{5}}$)=…=$\frac{1}{{2}^{7}}$f(1)=$\frac{1}{{2}^{7}}$=$\frac{1}{128}$.
∴f($\frac{1}{2016}$)=$\frac{1}{{2}^{7}}$=$\frac{1}{128}$.
故选:C.

点评 本题考查抽象函数及其应用,突出考查赋值法,考查运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{2}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:对任意x∈R,有cosx≤1,则(  )
A.¬p:存在x∈R,使cosx>1B.¬p:对任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:对任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点(2,1)作圆(x-1)2+(y+2)2=25的弦,其中最短的弦所在的直线方程为(  )
A.3x-y-5=0B.x+3y-1=0C.2x-y-3=0D.x+3y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:
①x1>x2;②x12>x22;③|x1|>x2;④x1+x2<0;⑤x1>|x2|.
其中能使f(x1)>f(x2)恒成立的条件序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数.
(1)y=$\frac{1+cosx}{1-cosx}$
(2)y=(sinx-cosx)
(3)y=x3+3x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)f(x)=Asin(ωx+φ)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点$({-\frac{5π}{12},0})$对称
C.将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是$[{kπ+\frac{7π}{12},kπ+\frac{13π}{12}}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“0≤a<2”是“ax2+2ax+1>0的解集是实数集R”的(  )
A.充分而非必要条件B.必要而非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三月植树节,林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,25,29,19,32,28,25,33;
乙:10,30,47,27,46,14,26,10,44,46;
(1)画出两组数据的茎叶图,并根据茎叶图对乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为$\overline{x}$,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
(3)若树苗的合格高度为31(厘米),则乙种树苗高度合格的概率是多少?

查看答案和解析>>

同步练习册答案