精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{e^x}{x}$-$\frac{{aln\frac{x}{2}}}{x^2}$+x,曲线y=f(x)在(2,f(2))处切线的斜率为$\frac{e^2}{4}$.(e为自然对数的底数)
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)>e+2.

分析 (Ⅰ)求导数,利用曲线y=f(x)在(2,f(2))处切线的斜率为$\frac{e^2}{4}$,解出即可;
(Ⅱ)令函数$g(x)=\frac{e^x}{x}$,${g^'}(x)=\frac{{{e^x}(x-1)}}{x^2}$,设函数$h(x)=\frac{{8ln\frac{x}{2}}}{x^2}-x$,${h^'}(x)=\frac{{8-16ln\frac{x}{2}-{x^3}}}{x^3}$,令$φ(x)=8-16ln\frac{x}{2}-{x^3}$,${φ^'}(x)=-\frac{16}{x}-3{x^2}<0$,证明$f(x)=\frac{e^x}{x}-\frac{{8ln\frac{x}{2}}}{x^2}+x\;>g{(x)_{min}}-h{(x)_{max}}=e+2$.

解答 (Ⅰ)解:因为$f(x)=\frac{e^x}{x}-\frac{{aln\frac{x}{2}}}{x^2}+x$,
所以${f^'}(x)=\frac{{{e^x}(x-1)}}{x^2}-\frac{{a-2aln\frac{x}{2}}}{x^3}+1$,…(2分)
则${f^'}(2)=\frac{e^2}{4}-\frac{a}{8}+1=\frac{e^2}{4}$,得a=8.…(4分)
(Ⅱ)证明:$f(x)=\frac{e^x}{x}-\frac{{8ln\frac{x}{2}}}{x^2}+x$,x∈(0,+∞),
设函数$g(x)=\frac{e^x}{x}$,${g^'}(x)=\frac{{{e^x}(x-1)}}{x^2}$,…(6分)
当x∈(0,1)时,g′(x)<0,g(x)为减函数,
当x∈(1,+∞)时,g′(x)>0,g(x)为增函数,
则g(x)≥g(1)=e.…(8分)
设函数$h(x)=\frac{{8ln\frac{x}{2}}}{x^2}-x$,${h^'}(x)=\frac{{8-16ln\frac{x}{2}-{x^3}}}{x^3}$,
令$φ(x)=8-16ln\frac{x}{2}-{x^3}$,${φ^'}(x)=-\frac{16}{x}-3{x^2}<0$,
则$φ(x)=8-16ln\frac{x}{2}-{x^3}$在x∈(0,+∞)为减函数,…(10分)
又因为φ(2)=0,则当x∈(0,2)时,φ(x)>0,即h′(x)>0,h(x)为增函数,
则当x∈(2,+∞)时,φ(x)<0,即h′(x)<0,h(x)为减函数,
所以h(x)≤h(2)=-2,
综上所述,$f(x)=\frac{e^x}{x}-\frac{{8ln\frac{x}{2}}}{x^2}+x\;>g{(x)_{min}}-h{(x)_{max}}=e+2$.…(12分)

点评 本题考查利用导数研究曲线上某点切线方程及函数的最值问题,(Ⅱ)问关键是构造函数,转化为求函数的最值解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.对于给定的非空数集,其最大元素最小元素的和称为该集合的“特征值”,A1,A2,A3,A4,A5都含有20个元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},则这A1,A2,A3,A4,A5的“特征值”之和的最小值为325.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax+1,a∈R
(1)求f(x)在x=1处的切线方程;
(2)若不等式f(x)≤0恒成立,求a的取值范围;
(3)记bn=nln[($\frac{1}{2}$)n-1+1],数列{bn}的前n项和为Tn,求证:Tn<4-$\frac{n+2}{{{2^{n-1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=log20.3,b=log0.32,c=log0.80.4则(  )
A.c>a>bB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=ex+a,g(x)=-x2-4x+2,设函数h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$,若函数h(x)的最大值为2,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x与y之间的一组数据:
x014m3
ym35.57
根据数据可求得y关于x的线性回归方程为$\hat y$=2.1x+0.85,则m的值为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是一个公差大于0的等差数列,且满足a2a3=15,a1+a4=8.
(1)求数列{an}的通项公式;
(2)设数列{${\frac{b_n}{2^n}}\right.$}的前n项和为Tn且Tn=$\frac{{{a_n}+1}}{2}$(n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,BA⊥AD,AD=CD=2AB,AB∥CD,E,F分别是PC,CD的中点,R是PB上一个动点.
(1)求证:无论R在PB上的何处,恒有平面BEF⊥平面RCD;
(2)设PA=λAB,R为靠近P的一个三等分点,若平面DER与平面ABCD所成的角为60°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|2x-a|+5x,a>0.
(1)若不等式f(x)≤0解集为{x|x≤-1},求a的值;
(2)若不等式f(x)≥4x+1对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案