精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3-4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则


  1. A.
    x1>-1
  2. B.
    x2<0
  3. C.
    x2>0
  4. D.
    x3>2
C
分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.
解答:∵函数f (x)=x3-4x+a,0<a<2,∴f′(x)=3x2-4.令f′(x)=0可得 x=
∵当x<-时,f′(x)>0;在(-)上,f′(x)<0;在(,+∞)上,f′(x)>0.
故函数在(∞,-)上是增函数,在(-)上是减函数,在(,+∞)上是增函数.
故f(-)是极大值,f()是极小值.
再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,可得 x1<-,-<x2,x3
根据f(0)=a>0,且f()=a-<0,可得 >x2>0.
故选C.
点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案