精英家教网 > 高中数学 > 题目详情
1.如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3D为AB的中点,AB1⊥A1C
(1)求点C1到平面A1CD的距离;
(2)求二面角A1-CD-C1的平面角的余弦值.

分析 (1)以D为原点,DC,DA,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出点C1到平面A1CD的距离.
(2)求出平面CDC1的法向量和平面A1CD的法向量,利用向量法能求出二面角A1-CD-C1的平面角的余弦值.

解答 解:(1)∵在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点,AB1⊥A1C,
∴以D为原点,DC,DA,DD1为x,y,z轴,建立空间直角坐标系,
A(0,2,0),C($\sqrt{5}$,0,0),设AA1=t,则A${{\;}_{1}}^{\;}$(0,2,t),B1(0,-2,t),
$\overrightarrow{A{B}_{1}}$=(0,-4,t),$\overrightarrow{{A}_{1}C}$=(0,-2,-t),
∵AB1⊥A1C,∴$\overrightarrow{A{B}_{1}}•\overrightarrow{{A}_{1}C}$=8-t2=0,解得t=2$\sqrt{2}$,
∴C1(0,0,2$\sqrt{2}$),$\overrightarrow{D{A}_{1}}$=(0,2,2$\sqrt{2}$),$\overrightarrow{DC}$=($\sqrt{5}$,0,0),$\overrightarrow{D{C}_{1}}$=(0,0,2$\sqrt{2}$),
设平面A1CD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2y+2\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=\sqrt{5}x=0}\end{array}\right.$,取y=$\sqrt{2}$,得$\overrightarrow{n}$=(0,$\sqrt{2}$,-1),
∴点C1到平面A1CD的距离d=$\frac{|\overrightarrow{D{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2\sqrt{2}}{\sqrt{3}}$=$\frac{2\sqrt{6}}{3}$.
(2)平面CDC1的法向量$\overrightarrow{m}$=(0,1,0),
平面A1CD的法向量$\overrightarrow{n}$=(0,$\sqrt{2}$,-1),
设二面角A1-CD-C1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$.
∴二面角A1-CD-C1的平面角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查空间直线与直线、直线与平面的位置关系、点到平面的距离及二面角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式|x|+2|y|≤m,设z=x2+y2+4y+5,如果z的最小值是2,则实数m的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知0<α<$\frac{π}{2}$,若m=lg$\sqrt{1+cosα}$,n=lg$\frac{1}{\sqrt{1-cosα}}$,则sinα等于(  )
A.10m+nB.10m-nC.10mnD.10${\;}^{\frac{m}{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将十进制数389化成四进制数的末位是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.
(Ⅰ)分别求出两人得分的平均数与方差;
(Ⅱ)请对两人的训练成绩作出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\vec a=({2,3})$,$\vec b=({-2,4})$,向量$\vec a$与b夹角为θ,
(1)求cosθ;
(2)求$\vec b$在$\vec a$的方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设二项式${({x-\frac{1}{{\sqrt{x}}}})^6}$展开式中的常数项为a,则$\int_0^{\frac{π}{2}}{cos\frac{ax}{5}dx}$的值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的结果是(  )
A.15B.16C.17D.18

查看答案和解析>>

同步练习册答案