精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a1=3,an1+2(nN*).

()计算a2a3a4的值;

()根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.

【答案】(Ⅰ)a2=2+a3=2+a4=4.(Ⅱ)答案见解析.

【解析】试题分析()利用代入计算,可得结论;()()根据前四项的公共规律,猜想然后利用归纳法进行证明,检验时等式成立,假设时命题成立,证明时命题也成立即可.

试题解析:()a1=3,an1+2(nN*)可得a2=2+a3=2+

a4=2+=4.

()()猜想:an=2+nN*.

以下用数学归纳法证明:

(1)n=1时,左边a1=3,右边2+1=3,符合结论;

(2)假设当nk(k≥2,kN*)时,结论成立,即ak=2+

那么ak1+2

+2

+2=+2,

所以当nk+1时,猜想也成立,

根据(1)(2),可知猜想对于任意nN*都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积为( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通项公式;
(2)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: =1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c,若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,则b的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中a为常数).

(1)当a=1时,求fx)在上的值域;

(2)若当x∈[0,1]时,不等式恒成立,求实数a的取值范围;

(3)设,是否存在正数a,使得对于区间上的任意三个实数mnp,都存在以fgm)),fgn)),fgp))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的零点, 图像的对称轴,且 单调,则 的最大值为(  )
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

同步练习册答案