精英家教网 > 高中数学 > 题目详情

【题目】如图所示,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,ACBC=4,四边形ABDE是直角梯形,BDAEBDBABDAE=2,OM分别为CEAB的中点.

(1)求证:OD∥平面ABC

(2)求直线CD和平面ODM所成角的正弦值;

【答案】(1)见解析(2)

【解析】试题分析:(1)通过证明线线平行得到线面平行;(2)C为原点,分别以CACB所在直线为xy轴,以过点C且与平面ABC垂直的直线为z轴,建立空间直角坐标系,求出平面ODM的一个法向量,利用直线与平面所成的角的公式,求出直线CD和平面ODM所成角的正弦值。

试题解析:(1)证明 如图,取AC中点F,连接OFFB.

FAC中点,OCE中点,

OFEAOFEA.

BDAEBDAE

OFDBOFDB

∴四边形BDOF是平行四边形,∴ODFB.

又∵FB平面ABCOD平面ABC

OD∥平面ABC.

(2)解 ∵平面ABDE⊥平面ABC,平面ABDE∩平面ABCABDB平面ABDE,且BDBA

DB⊥平面ABC.

BDAE,∴EA⊥平面ABC.

又△ABC是等腰直角三角形,且ACBC

∴∠ACB=90°,

∴以C为原点,分别以CACB所在直线为xy轴,以过点C且与平面ABC垂直的直线为z轴,建立空间直角坐标系,如图所示.

ACBC=4,∴C(0,0,0),A(4,0,0),B(0,4,0),D(0,4,2),E(4,0,4),O(2,0,2),M(2,2,0),

=(0,4,2),=(-2,4,0),=(-2,2,2).

设平面ODM的法向量为n=(xyz),

则由nn,可得

x=2,得y=1,z=1,∴n=(2,1,1).

设直线CD和平面ODM所成角为θ

则sin θ.

直线CD和平面ODM所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下图中,四边形 ABCD是等腰梯形, OQ分别为线段ABCD的中点,OQEF的交点为POP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结ADBC,得一几何体如图所示.

(Ⅰ)证明:平面ABCD平面ABFE

(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lgx+1(1≤x≤100),则g(x)=f2(x)+f(x2)的值域为(
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),当x>1时,有f(x)>0.
(1)求f(1),判定并证明f(x)的单调性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且(2bc)cos Aacos C

(1)求角A的大小;

(2)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+1,a,b∈R,当x=﹣1时,函数f(x)取到最小值,且最小值为0;
(1)求f(x)解析式;
(2)关于x的方程f(x)=|x+1|﹣k+3恰有两个不相等的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计) 即为中奖.

乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.

问:购买该商品的顾客在哪家商场中奖的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案