精英家教网 > 高中数学 > 题目详情
8.A、B分别是复数z1、z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

分析 利用复数的几何意义,结合向量的性质进行判断即可.

解答 解:设复数z1、z2在复平面内对应的向量为$\overrightarrow{{z}_{1}}$,$\overrightarrow{{z}_{2}}$,
则由|z1+z2|=|z1-z2|,得|$\overrightarrow{{z}_{1}}$+$\overrightarrow{{z}_{2}}$,|=|$\overrightarrow{{z}_{1}}$-$\overrightarrow{{z}_{2}}$|,
则向量$\overrightarrow{{z}_{1}}$,$\overrightarrow{{z}_{2}}$为邻边的平行四边形为矩形,
则角形AOB一定是直角三角形,
故选:B.

点评 本题主要考查复数几何意义的意义,根据条件转化为向量是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.集合A={x|3x+2>0},B={x|$\frac{x+1}{x-3}$<0},则A∩B=(  )
A.(-1,+∞)B.(-1,-$\frac{2}{3}$)C.(3,+∞)D.(-$\frac{2}{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a1+a4+a7=$\frac{5}{4}π$,那么cos(a3+a5)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为$\overrightarrow{a}$和$\overrightarrow{b}$,则下列说法中错误的是(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$为平行向量B.$\overrightarrow{a}$与$\overrightarrow{b}$为模相等的向量
C.$\overrightarrow{a}$与$\overrightarrow{b}$为共线向量D.$\overrightarrow{a}$与$\overrightarrow{b}$为相等的向量

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)在R上是可导函数,f(x)的图象如图所示,则不等式f′(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,2)∪(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-2,-1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径r=$\frac{2S}{a+b+c}$,这是平面几何中的一个命题,其证明采用“面积法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.则r=$\frac{2S}{a+b+c}$.
(1)将此结论类比到空间四面体:设四面体S-ABC的四个面的面积分别为S1,S2,S3,S4.体积为V,猜想四面体的内切球半径(用S1,S2,S3,S4,V,表示).
(2)用综合法证明上述结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正四棱锥P-ABCD中,PA=AB,E,F分别为PB,PD的中点.
(Ⅰ)求证:AC⊥平面PBD;
(Ⅱ)求异面直线PC与AE所成角的余弦值;
(Ⅲ)若平面AEF与棱PC交于点M,求$\frac{PM}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\sqrt{3}sin({2ωx-\frac{π}{3}})+b(ω>0)$,且该函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当$x∈[{0,\frac{π}{3}}]$时,f(x)的最大值为1.
(1)求函数f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若f(x)-3≤m≤f(x)+3在$[{0,\frac{π}{3}}]$上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若(2x-$\frac{1}{{x}^{2}}$)n的展开式中所有二项式系数和为64,则n=6;展开式中的常数项是240.

查看答案和解析>>

同步练习册答案