精英家教网 > 高中数学 > 题目详情
13.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径r=$\frac{2S}{a+b+c}$,这是平面几何中的一个命题,其证明采用“面积法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.则r=$\frac{2S}{a+b+c}$.
(1)将此结论类比到空间四面体:设四面体S-ABC的四个面的面积分别为S1,S2,S3,S4.体积为V,猜想四面体的内切球半径(用S1,S2,S3,S4,V,表示).
(2)用综合法证明上述结论.

分析 (1)根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可,
(2)类似△ABC的内切圆半径r=$\frac{2S}{a+b+c}$的即可证明.

解答 解:(1)设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
∴四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为V=$\frac{1}{3}$(S1+S2+S3+S4)r,
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$,
(2)证明:VS-ABC=VO-ABC+VO-SAB+VO-SBC+VO-SAC=$\frac{r}{3}$(S△ABC+S△SAB+V△SBC+VO△SAC),
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.命题“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是(  )
A.?x>0,总有(x+1)ex≤1B.?x≤0,总有(x+1)ex≤1
C.?x0≤0,总有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b,c分别为△ABC的内角A,B,C所对的边,且3a2+3b2-c2=4ab,则△ABC(  )
A.可能为锐角三角形B.一定不是锐角三角形
C.一定为钝角三角形D.不可能为钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}中,若其前13项的和S13=52,则a7为(  )
A.4B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.A、B分别是复数z1、z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设等比数列{an}的前n项和为Sn.若a1=3,S2=9,则an=3•2n-1;Sn=3•(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x-3)2+(y-t)2=t2(t≠0,t∈R),A(-3,0),B(3,2t),F(2,0).
(1)若过A倾斜角为60°的直线与圆C相切,求t的值;
(2)过F且倾斜角不为0的直线l与圆C相切,l与AB交于M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了考查某种药物预防H7N9禽流感的效果,某研究中心选了100只鸡做实验,统计如下
得禽流感不得禽流感总计
服药54550
不服药143650
总计1981100
(Ⅰ)能有多大的把握认为药物有效
(Ⅱ)在服药后得禽流感的鸡中,有2只母鸡,3只公鸡,在这5只鸡中随机抽取3只再进行研究,求至少抽到1只母鸡的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2-4<0},N={x|1≤2x≤8,x∈Z},则N∩M=(  )
A.[0,2)B.{0,1}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

同步练习册答案