分析 (1)根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可,
(2)类似△ABC的内切圆半径r=$\frac{2S}{a+b+c}$的即可证明.
解答 解:(1)设四面体的内切球的球心为O,![]()
则球心O到四个面的距离都是R,
∴四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为V=$\frac{1}{3}$(S1+S2+S3+S4)r,
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$,
(2)证明:VS-ABC=VO-ABC+VO-SAB+VO-SBC+VO-SAC=$\frac{r}{3}$(S△ABC+S△SAB+V△SBC+VO△SAC),
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$
点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
科目:高中数学 来源: 题型:选择题
| A. | ?x>0,总有(x+1)ex≤1 | B. | ?x≤0,总有(x+1)ex≤1 | ||
| C. | ?x0≤0,总有(x0+1)${e}^{{x}_{0}}$≤1 | D. | ?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 可能为锐角三角形 | B. | 一定不是锐角三角形 | ||
| C. | 一定为钝角三角形 | D. | 不可能为钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | C. | 等边三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 得禽流感 | 不得禽流感 | 总计 | |
| 服药 | 5 | 45 | 50 |
| 不服药 | 14 | 36 | 50 |
| 总计 | 19 | 81 | 100 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2) | B. | {0,1} | C. | {0,1,2} | D. | {0,1,3} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com