精英家教网 > 高中数学 > 题目详情
4.已知a,b,c分别为△ABC的内角A,B,C所对的边,且3a2+3b2-c2=4ab,则△ABC(  )
A.可能为锐角三角形B.一定不是锐角三角形
C.一定为钝角三角形D.不可能为钝角三角形

分析 利用余弦定理表示出cosC,将已知等式变形后代入得到cosC的范围,确定出C的范围,即可得到结果.

解答 解:当3a2+3b2-c2=4ab,即a2+b2-c2=-2a2-2b2+4ab=-2(a-b)2
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$≤$\frac{-2(a-b)^{2}}{2ab}$≤0,
∵C∈(0,π),
∴C不可能为锐角.
故选:B.

点评 此题考查了余弦定理在解三角形中的应用,熟练掌握余弦定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-2x2-4x.
(1)求函数y=f(x)的单调区间;
(2)求函数f(x)在区间[-1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下三个命题
①设回归方程为$\stackrel{∧}{y}$=3-3x,则变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N (1,σ2) (σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,AC=2,A=120°,cosB=$\sqrt{3}$sinC.
(Ⅰ)求边AB的长;
(Ⅱ)设D是BC边上一点,且△ACD的面积为$\frac{3\sqrt{3}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a1+a4+a7=$\frac{5}{4}π$,那么cos(a3+a5)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),$\overrightarrow{a}$=(-1,-3),$\overrightarrow{AC}$∥$\overrightarrow{a}$,则实数m的值是(  )
A.-1B.$\frac{7}{3}$C.-$\frac{7}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为$\overrightarrow{a}$和$\overrightarrow{b}$,则下列说法中错误的是(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$为平行向量B.$\overrightarrow{a}$与$\overrightarrow{b}$为模相等的向量
C.$\overrightarrow{a}$与$\overrightarrow{b}$为共线向量D.$\overrightarrow{a}$与$\overrightarrow{b}$为相等的向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径r=$\frac{2S}{a+b+c}$,这是平面几何中的一个命题,其证明采用“面积法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.则r=$\frac{2S}{a+b+c}$.
(1)将此结论类比到空间四面体:设四面体S-ABC的四个面的面积分别为S1,S2,S3,S4.体积为V,猜想四面体的内切球半径(用S1,S2,S3,S4,V,表示).
(2)用综合法证明上述结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于复数z=$\frac{2}{-1+i}$,下列说法中正确的是(  )
A.|z|=2
B.z的虚部为-i
C.z的共轭复数$\overline{z}$位于复平面的第三象限
D.z•$\overline{z}$=2

查看答案和解析>>

同步练习册答案