精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),$\overrightarrow{a}$=(-1,-3),$\overrightarrow{AC}$∥$\overrightarrow{a}$,则实数m的值是(  )
A.-1B.$\frac{7}{3}$C.-$\frac{7}{3}$D.1

分析 根据题意,由向量加法的坐标计算公式可得向量$\overrightarrow{AC}$的坐标,进而向量平行的坐标表示方法可得(2+m)×(-3)-1×(-1)=0,解可得m的值,即可得答案.

解答 解:根据题意,$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),
则$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=(1,2+m),
若$\overrightarrow{AC}$∥$\overrightarrow{a}$,则有(2+m)×(-3)-1×(-1)=0,
解可得m=1;
故选:D.

点评 本题考查向量平行的坐标表示方法,关键是求出向量$\overrightarrow{AC}$的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.数列{an}的前项和为Sn,且${a_1}=\frac{2}{3},{a_{n+1}}-{S_n}=\frac{2}{3}$,用[x]表示不超过x的最大整数,如[-0.1]=-1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4+…+b2n-1+b2n=$\frac{{2}^{2n+1}}{3}$-n-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$;
(Ⅱ)若该分店此次抽奖活动自开业始,持续10天,参加抽奖的每位顾客抽到一等奖(价值200元奖品)的概率为$\frac{1}{7}$,抽到二等奖(价值100元奖品)的概率为$\frac{2}{7}$,抽到三等奖(价值10元奖品)的概率为$\frac{4}{7}$,试估计该分店在此次抽奖活动结束时送出多少元奖品?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x|+|x-3|.
(1)求不等式f($\frac{x}{2}$)<6的解集;
(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b,c分别为△ABC的内角A,B,C所对的边,且3a2+3b2-c2=4ab,则△ABC(  )
A.可能为锐角三角形B.一定不是锐角三角形
C.一定为钝角三角形D.不可能为钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>0且a≠1,则(a-1)b<0是ab<1的(  )
A.充要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}中,若其前13项的和S13=52,则a7为(  )
A.4B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设等比数列{an}的前n项和为Sn.若a1=3,S2=9,则an=3•2n-1;Sn=3•(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.斜率为k(k>0)的直线l经过点F(1,0)交抛物线y2=4x于A,B两点,若△AOF的面积是△BOF面积的2倍,则k=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案